
Real-Time Acoustic Modeling for Distributed Virtual Environments

Thomas Funkhouser
Princeton University

Patrick Min
Princeton University

Ingrid Carlbom
Bell Laboratories

Abstract

Realistic acoustic modeling is essential for spatializing sound in
distributed virtual environments where multiple networked users
move around and interact visually and aurally in a shared vir-
tual world. Unfortunately, current methods for computing accurate
acoustical models are not fast enough for real-time auralization of
sounds for simultaneously moving sources and receivers. In this pa-
per, we present three new beam tracing algorithms that greatly ac-
celerate computation of reverberation paths in a distributed virtual
environment by taking advantage of the fact that sounds can only
be generated or heard at the positions of “avatars” representing the
users. Thepriority-driven beam tracingalgorithm performs a best-
first search of a cell adjacency graph, and thus enables new termina-
tion criteria with which all early reflection paths can be found very
efficiently. Thebidirectional beam tracingalgorithm combines sets
of beams traced from pairs of avatar locations to find reverbera-
tion paths between them while requiring significantly less compu-
tation than previous unidirectional algorithms. Theamortized beam
tracing algorithm computes beams emanating from box-shaped re-
gions of space containing predicted avatar locations and re-uses
those beams multiple times to compute reflections paths as each
avatar moves inside the box. Cumulatively, these algorithms enable
speedups of approximately two orders of magnitude over previous
methods. They are incorporated into a time-critical multiprocess-
ing system that allocates its computational resources dynamically in
order to compute the highest priority reverberation paths between
moving avatar locationsin real-timewith graceful degradation and
adaptive refinement.

Key Words: Virtual environment systems, virtual reality,
acoustic modeling, auralization, beam tracing.

1 Introduction

Distributed virtual environment (DVE) systems incorporate com-
puter graphics, sound, and networking to simulate the experience of
real-time interaction between multiple users represented by avatars
in a shared three-dimensional virtual world. They allow a user to
“explore” information and “interact” with other users in the con-
text of a virtual environment by rendering images and sounds of the
environment in real-time while the user “moves” through the 3D
environment interactively. Example applications for DVE systems
include collaborative design [4], distributed training [35], telecon-
ferencing [29], and multi-player games [27].

A difficult challenge in implementing a DVE system is to render
realistic sounds spatialized according to the virtual environment in

real-time on every participating user’s computer. Sound waves orig-
inating at a source location travel through the environment along a
multitude of reverberation paths, representing different sequences
of reflections, transmissions, and diffractions. The different arrival
times and amplitudes of sound waves traveling along these paths
provide important auditory cues for localization of objects, separa-
tion of simultaneous speakers (i.e., the “cocktail party effect”), and
sense of presence in a virtual environment [11].

The goal of our work is to build a DVE system in which mul-
tiple users can communicate with each other in a 3D virtual world
with realistic spatialized sound. User generated sounds and avatar
movements are transmitted via network messages to an audio server
which spatializes sounds according to impulse responses encoding
the reverberations computed for every pair of avatars (see Figure
1). The new research challenge is to develop geometric acoustic
modeling algorithms to compute reverberation paths between ev-
ery pair of avatar locationsin real-timeas they move through a 3D
environment.

///////////////
///////////////
///////////////
///////////////
///////////////
///////////////
///////////////
///////////////
///////////////
///////////////
///////////////
///////////////
///////////////
///////////////
///////////////

Client A

Network
Client B

Client D

Client C

Audio
Server

Figure 1: Distributed virtual environment system.

Acoustic modeling algorithms for DVE systems must be effi-
cient, adaptive, predictive, and asynchronous so that appropriate
impulse responses are ready for use without delay as avatars move.
Since the numbers and locations of avatars inhabiting the virtual
environment can be highly variable, it is not practical to preallocate
a fixed amount of computational resources to the update of rever-
beration paths between any pair of avatars. Some avatars may be
moving very closely to one another within the same room, requir-
ing impulse response updates at more than 10Hz to avoid noticeable
localization artifacts, while others may be separated by great dis-
tances and require less frequent and/or less accurate acoustic sim-
ulations (people can detect angular differences in sound source lo-
cations separated by 5 degrees [3]). Similarly, the quality of the
computed results should degrade gracefully as the computational
demands increase (e.g., when more users inhabit the environment),
and it should refine adaptively as more resources become available
(e.g., when all the users remain stationary). Time critical algorithms
must be used to guarantee update rates and allocate computational
resources effectively and adaptively so that the overall quality of
computed impulse responses is the best possible.

In this paper, we describe geometric beam tracing algorithms
to compute reverberation paths between moving avatar locations at
very high rates. The primary research contributions are embodied in
the three methods we introduce for accelerating computation of re-
verberation paths: 1) priority-driven beam tracing, 2) bidirectional
beam tracing, and 3) amortized beam tracing. We have integrated
these methods into a time-critical computing framework to build
a complete DVE system incorporating realistic imagery and spa-
tialized sound for real-time communication between multiple net-
worked users.

2 Previous Work

There has been decades of work inoff-line acoustic modeling for
applications such as concert hall design. Previous methods include
path tracing [22], image source methods [1, 5], boundary element
methods [26, 33], and beam tracing [8, 18]. Surveys of work in
this area appear in [3, 21, 23]. In general, current off-line systems
compute reverberation paths for a small set of pre-specified source
and receiver locations, and they allow interactive evaluation only
for precomputed results. Unfortunately, it is usually not possible
to store precomputed impulse responses or reverberation paths over
all possible avatar locations for use by a distributed virtual environ-
ment system, as the storage requirements of this approach would be
prohibitive for all cases except very simple environments or very
coarse samplings.

There have also been many advances over the last decade in dis-
tributed virtual environments systems supporting visual interactions
between networked users in a shared 3D virtual environment (an
early example is Reality Built for Two [4]). The most common
examples include multi-player games (e.g., Quake [27]), military
battle simulations (e.g., NPSNET [35]), and multi-user chat envi-
ronments (e.g., Sony’s Community Place [29]). These programs
display images in real-time with complex global illumination and
textures to produce visually compelling immersive experiences.

On the other hand, there has been relatively little progress in real-
time acoustic modeling. Current on-line systems generally consider
only simple geometric arrangements and low-order specular reflec-
tions. For instance, the Acoustetron [13] computes only first- and
second-order specular reflections for box-shaped virtual environ-
ments, while video games provide spatialized sound with ad hoc
localization methods (e.g., pan effects), rather than with realistic
acoustic modeling methods. Almost all DVE systems attenuate
sound with distance, and many support user-specified “regions of
influence” (e.g., ellipsoids) for each sound source [16]. However,
to quote the 1995 National Research Council Report on Virtual Re-
ality Scientific and Technological Challenges [12], “current tech-
nology is still unable to provide interactive systems with real-time
rendering of acoustic environments with complex, realistic room
reflections.”

The new algorithms presented in this paper are based on the
beam tracing method described in [14]. To review, beams are traced
from the position of eachstationarysound source along paths of
transmission and specular reflection via a depth-first traversal of an
adjacency graph of polyhedral cells (see Figure 2). The algorithm
starts in the cell containing the source with a beam representing the
entire cell (labeled ‘D’). Then, it recursively traces convex pyrami-
dal beams through intersected cell boundaries into adjacent cells,
incrementally trimming the beams by convex polygons at traversed
cell boundaries (u, o, p, t, ands), and mirroring the beams at re-
flecting cell boundaries (o andp). The recursion of each depth-first
traversal is captured and stored in a beam tree, representing all the
traced reverberation paths emanating from the source. Later, during
an interactive session, the precomputed beam trees are used to gen-
erate reverberation paths to a moving receiver position. For every
beam containing the receiver, a reverberation path is constructed

by iterative intersection with the reflecting cell boundaries stored
with the ancestors of the corresponding beam tree node (as shown
in Figure 2).

A

B

C
D

E

S

p

u

t
sR

Ip

Ioo

So

Sop
Figure 2: Beam tracing.

The key idea in this previous method is that it is possible to use
an off-line precomputation to construct a data structure (a beam
tree) encoding potential reverberation paths from each static source
location and use that precomputed data structure to compute rever-
beration paths to a moving receiver quickly for auralization. Since
the off-line beam tracing algorithm takes up to 50 seconds for each
new source location [14], this method is not directly applicable for
computing reverberation paths in real-time betweenmovingavatars
in a distributed virtual environment. Other data structures proposed
for interactive updates of global illumination solutions are best
suited for handling changes to materials and geometry in primarily
diffuse environments [6, 10], and they would generally not perform
well for viewpoint changes in highly specular environments.

The focus of our new work is developing beam tracing algo-
rithms that can be used to compute reverberation pathsin real-time
with update rates suitable for auralization in distributed virtual en-
vironment applications (up to 100Hz). Achieving this goal requires
acceleration of current beam tracing methods by two or three orders
of magnitude.

3 Overview of Approach

Our approach is to take advantage of the fact that DVE systems
must only compute reverberation paths between avatar locations,1

and not between all points in 3D space. Since avatars are located
at a discrete set of positions, and they tend to move along contin-
uous paths, beam tracing algorithms for DVEs can utilize directed
searches and temporal coherence to find reverberation paths very
efficiently. In this paper, we propose the following three beam trac-
ing algorithms that exploit these properties:

• Priority-driven beam tracing uses psychoacoustically moti-
vated priorities and termination criteria to trace only beams
that can represent the most significant reverberation paths
from one avatar location to another.

• Bidirectional beam tracing combines two sets of beams
traced from different avatar locations to find reverberation
paths efficiently.

• Amortized beam tracing utilizes beams traced from a re-
gion of space to compute reverberation paths quickly for a
sequence of nearby avatar locations.

The following three sections contain detailed descriptions of
these new algorithms, while Sections 7 and 8 describe how they
are integrated into our adaptive, real-time DVE system.

1We extend the notion of an avatar to include anything that can be a
source or receiver of sound.

4 Priority-Driven Beam Tracing

The first algorithm is motivated by priority-driven search meth-
ods. For a given avatar location, all reverberation paths are not
equally important. Some paths are psychoacoustically very signif-
icant (e.g., direct paths to other avatars), while others follow com-
plex sequences of reflections towards empty regions of space.

Our priority-driven beam tracing algorithm exploits knowledge
of avatar locations to compute only the most significant reverbera-
tion paths efficiently. Specifically, the algorithm considers beams
in best-firstorder, rather than depth-first order as in previous beam
tracing algorithms (e.g., [14]). As beam trees are constructed, the
leaf nodes are stored in a priority queue, and the highest priority
node is iteratively popped for expansion at each step. The benefit
of this approach is that the most significant beams are considered
first, enabling methods based on adaptive refinement and dynamic
termination criteria.

The first issue in implementing the priority-driven algorithm is to
assign relative priorities to different beam tree nodes. Following ac-
cepted practice of the acoustics literature, we partition the reverber-
ation paths represented by the beams into two categories: 1) early
reflections, and 2) late reverberations. Early reflections are defined
as the ones that arrive at the receiver within some short amount of
time,Te, after the most direct sound, while late reverberations com-
prise the rest (20ms ≤ Te ≤ 80ms [3, 17]). Since localization in
the human brain is most sensitive to the early reflections, and the
late reverberations are characterized by many paths arriving from
all directions after being multiply scattered by many surfaces, ge-
ometric acoustic modeling systems generally compute only early
specular reflections, while late reverberations and diffractions are
modeled with statistical approximations (see Figure 3). In our cur-
rent system, we use this approach, assigning higher priorities to
beam tree nodes representing shorter reflection paths.

A
m

pl
itu

de

Time Delay

 Late
Reverberations

 Early
Reflections

Direct
Sound

Te

Figure 3: Impulse response.

The second issue is how to guide our priority-driven algorithm to
find early specular reflection paths efficiently. Previous algorithms
have traced beams in depth-first order up to some termination cri-
teria based on the maximum number of reflections, maximum path
length, and/or maximum attenuation. One problem with this ap-
proach is that it is impossible to select a priori a termination crite-
rion that guarantees finding all early specular reflection paths. In
general, the length of the longest early reflection path cannot be
predetermined, since it depends on the length of the shortest one,
which is not known until it is found.

Priority-ordered search helps us overcome this problem. We as-
sign the priority ,f(B), of each beam tree node,B, to the length
of the shortest path from the beam source to the last traversed cell
boundary,g(B), plus the length of the shortest path from that cell
boundary to the closest avatar location,h(B) (see Figure 4). Since
f(B) underestimates the length of any path throughB to an avatar,
we can be assured that all early specular reflection paths are found if
we terminate the traversal when the value off(B) for all nodes re-
maining in the priority queue corresponds to an arrival time at least
Te later than the most direct path found to every avatar location.

Source

Closest
 Avatar

Last Traversed
Cell Boundary

f(B) = g(B) + h(B)

h(B)

g(B)

Figure 4: The priority heuristic,f(B), underestimates the distance
traveled so far,g(B), plus the distance to the closest avatar,h(B).

Our implementation of this approach is closely related to the
classicalA∗ algorithm from the artificial intelligence literature [15].
The difference is that the search for each avatar locations has mul-
tiple goals (i.e., the early reflection paths to all other avatar loca-
tions). Thus, we must remember the shortest path to each avatar
when we find it, and we must remember for which avatars we have
already considered all potential early reflection paths.

The primary advantage of the priority-driven beam tracing
method is that it avoids geometric computations for many beams
representing insignificant reverberation paths, and therefore it is
able to compute the significant ones more rapidly. It can also be
used to allocate resources dynamically in a real-time system (see
Section 7). The disadvantage is that there is extra overhead in
computing priorities and maintaining priority queues of beam tree
nodes.

5 Bidirectional Beam Tracing

The second algorithm uses a bidirectional approach to combine
beam trees traced independently from two different avatar locations
to find reverberation paths between them.

The primary motivation for a bidirectional approach is that the
computational complexity of beam tracing algorithms grows expo-
nentially with increasing reflections. Consequently, tracing one set
of beams up tok reflections usually takes far longer than tracing
two sets of beams up tok/2 reflections.

A second motivation is that DVE systems must find reverbera-
tion paths between all pairs of avatars. In this situation, unidirec-
tional approaches are inherently redundant, since beams must be
traced fully from all except one avatar locations to insure that rever-
beration paths are found between all pairs. But then almost every
reverberation path is traced twice, once in each direction. With a
bidirectional approach, we can avoid this redundant work by com-
bining beams traced from one avatar location with beams traced
from another to find the same reverberation paths more efficiently.

Bidirectional path tracing approaches have been investigated for
decades in ray tracing (e.g., [7, 24, 34]), radiosity (e.g., [20, 28]),
and other fields (e.g., [9, 25]). Generally, for every ray found im-
pinging upon a surface, a data structure associated with the surface
is both updated and queried to compute the energy traveling for-
wards and backwards along the ray. The main challenge of the
bidirectional approach is to find a data structure that efficiently and
accurately represents the directional energy radiating from every
surface of the environment. Previous data structures for bidirec-
tional path tracing have mostly been based on storing discrete radi-
ance samples (e.g., “illumination maps” [2] and “radiosity textures”
[19]), and thus they suffer from aliasing artifacts. An important ob-
servation is that beam tree data structures [18] are an object-space

representation of the directional energy radiating from each surface,
and they are well-suited for implementing a bidirectional approach.

Our bidirectional beam tracing algorithm computes reverbera-
tion paths by combining beam trees traced independently from dif-
ferent avatar locations. The key contribution of our algorithm is the
method we use for determining which beams,B1 andB2, traced
independently from avatar locations,P1 andP2, combine to repre-
sent viable reverberation paths. We base our method on the follow-
ing observations, which apply for common ray propagation models
comprising specular reflections, diffuse reflections, transmissions,
and diffractions over locally reacting surfaces.2

• Condition A: There is a reverberation path ifB1 containsP2
(see Figure 5a).

• Condition B: There are (usually an infinite number of) rever-
beration paths containing a diffuse reflection at surfaceS if
bothB1 andB2 intersect the same region ofS (see Figure
5b).

• Condition C: There is a reverberation path containing a
straight-line transmission through surfaceS if: 1) both B1
andB2 intersect the same region ofS, 2) B1 intersects the
virtual source ofB2, and 3)B2 intersects the virtual source of
B1 (see Figure 5c).

• Condition D: There is a reverberation path containing a spec-
ular reflection at surfaceS if: 1) bothB1 andB2 intersect the
same region ofS, 2)B1 intersects the mirrored virtual source
of B2, and 3)B2 intersects the mirrored virtual source ofB1
(see Figure 5d).

• Condition E: There is a reverberation path containing a
diffraction at an edgeE if: 1) B1 andB2 both intersect the
same region ofE (see Figure 5e).

To accelerate determination of these conditions, we construct
lists of beam tree nodes intersecting each cell and face of the spatial
subdivision as the beams are traced. We traverse these lists to de-
termine efficiently which pairs of beam tree nodes potentially com-
bine to represent viable reverberation paths, avoiding consideration
of all n(n−1)/2 pairwise combinations of traced beams. First, for
each pair of beam tree nodes considered, we check to see if both
nodes are either the root or a leaf of their respective beam trees. If
not, the pair can be ignored, as it surely represents a reverberation
path that will be found by another pair of nodes. Otherwise, we
check the beams intersecting each cell containing an avatar to see if
they satisfy Condition A. We check pairs of beams intersecting the
same transmissive face to see if they satisfy Condition C. We check
pairs of beams intersecting the same reflecting face to see if they
satisfy Conditions D. Finally, we use the first node meeting one of
these criteria to compute an underestimating distance heuristic to
another avatar location, which can be used to aid early termination
when searching for early reflection paths in an integrated bidirec-
tional and priority-driven beam tracing algorithm.

As compared to unidirectional beam tracing methods, the main
advantage of our bidirectional algorithm is that paths with up to R
reflections can be found by combining two beam trees representing
up toR1 andR2 reflections, respectively, whereR1 +R2−1 = R.
SincecR1 + cR2 << cR for mostc, fewer beams must be traced.
The main disadvantage is that extra bookkeeping and processing is
required to combine beams from different beam trees.

2So far, we have implemented the methods only for specular reflections.

P2

P1P1’

B1

(a) Condition A

S

P2

P1P1’

P2’

B1 B2

 Diffuse
Reflection
 Region

(b) Condition B

S

P1P1’

P2’

B1

B2

Virtual
Source
 of B2 Transmission

Point

P2

Virtual
Source
 of B1

(c) Condition C

S

P2

P1P1’

P1’’

P2’

P2’’

B1
B2

Mirrored
Virtual
Source
 of B2

Mirrored
Virtual
Source
 of B1 Specular

Reflection
 Point

(d) Condition D

P2

P1

B1

B2

Diffraction
 Edge

(e) Condition E

Figure 5: Combining bidirectional beams.

6 Amortized Beam Tracing

The third algorithm accelerates computation of reflection paths be-
tween moving avatars by amortizing the cost of a single beam trac-
ing computation over several receiver locations.

The paths taken by people as they move through a virtual envi-
ronment generally exhibit a large amount of spatial and temporal
coherence. People usually do not jump from point to point arbi-
trarily. Rather, they tend to move along continuous paths. User
interfaces may even impose bounds on their speeds, rotations, and
directions of movement. Moreover, a person’s two ears are nearby
one another at fixed relative positions. By utilizing temporal coher-
ence and spatial constraints we can model reverberation paths more
efficiently for a sequence of receiver locations than for a set of un-
related locations. Specifically, we extend the notion of a beam tree
to includeconservative beamstraced from a region of space, rather
than just a point. Since these beams over-estimate the set of rever-
beration paths emanating from any point within the region, we can
usually re-use them for a sequence of receiver locations inside the
region to identify potential reverberation paths more rapidly than
tracing beams from scratch for every avatar movement.

Our approach is motivated by algorithms originally proposed for
conservative visibility determination (visibility is tracing 0th-order
paths) [30, 32]. These algorithms do not solve the visibility problem
exactly. Instead, they simply reduce the size of the polygon set to be
processed by a later hidden-surface algorithm (e.g., z-buffer). In the
same way, a conservative beam tree does not exactly represent the
reflection paths for any point. Instead, it encodes a superset of the
possible sequences of reflections and transmissions from all points
within its source region. Thus, to find exact reflection paths from
such a point to another point, we must only check a relatively small
set of potential polygon sequences encoded in the beam tree to see
which of them admits a “valid” reflection path. These relatively
simple checks can be executed very quickly for each pair of avatar
locations, while the much longer time required for beam tracing is

amortized over multiple avatar movements.
Our amortized beam tracing algorithm is integrated with the

priority-driven and bidirectional methods as shown in Figure 6.
From top to bottom, we first use motion prediction to update a set
of source regionsthat we expect to contain future avatar locations.
Then, in the second step, we trace conservatively over-estimating
polyhedral beams in priority order from each source region and
store them in aconservative beam tree. Next, for every pair of
source regions, we use our bidirectional methods to combine the
conservative beam trees to form a set ofpolygon sequences, each
of which describes how a ray traveling from one region to the other
can potentially reflect off and/or transmit through an ordered list
of polygons. Finally, for each time an avatar moves within one
of the source regions, we generate exact reflection paths to every
other avatar simply by processing the appropriate set of polygon
sequences. This last step is the only one repeated for every avatar
movement, and it is usually very fast.

Priority−driven
Beam Tracing

 Path
Generation

Reverberation
 Paths

 Avatar
Positions & Orientations

 Motion
Prediction

Source Regions

Conservative
Beam Trees

 Bidirectional
 Sequence
 Construction

 Polygon
 Sequences

 Cell
Adjacency
 Graph

Acoustical
 BRDFs

 Cell
Adjacency
 Graph

 Asynchronous
 (~10 Hz)

 On−line
 (~100 Hz)

Figure 6: Amortized beam tracing phases.

The key challenges in implementing this algorithm are: 1) se-
lecting effective source regions, 2) efficiently tracing a set of tightly
over-estimating beams emanating from a region of space, 3) form-
ing polygon sequences by combining beams traced from two re-
gions of space, and 4) checking polygon sequences quickly to see
if they admit valid reflection paths for a specific pair of avatar loca-
tions.

First, to select effective source regions, we must balance compet-
ing goals. Each one should contain as many future avatar locations
as possible so that its conservative beam tree can be re-used many
times. However, they cannot be too large (e.g., a whole room). Oth-
erwise, the beams traced from the region are “too over-estimating,”
which not only slows down the beam tracing computation, but also
puts undue processing burden on the subsequent steps. Our cur-
rent method updates a source region associated with each avatar by
predicting its motion with a second-degree polynomial curve and
detecting collisions with obstacles in the environment. The source
region is always an axis-aligned box with user-specified dimensions
(“Box Size”). We are currently extending this method to adapt the
size of each source region according to the locations of other avatars
and the geometric complexity of the local environment.

Second, to trace beams from a box-shaped source region effi-
ciently, we over-estimate the set of paths emanating from the source
by a polytope comprising the intersection of at most six halfs-
paces, with two halfspaces bounded by planes parallel to each of
the X, Y, and Z axes. Each of the three pairs of halfspaces form
a wedge bounding the beam in one dimension, and the intersec-
tion of the three wedges form a polytope over-estimating the po-
tential reverberation paths from any point within the source region.

As cell boundaries are traversed in the beam tracing algorithm, the
halfspaces are updated incrementally by a gift-wrapping step, in
which the plane bounding each halfspace is rotated around an ex-
tremal edge of the source box until it hits an extremal vertex of the
cell boundary, as shown in Figure 7. Although this beam tracing
method is slightly more over-estimating than previously described
approximations (e.g., [32]), it is very fast, requiring constant time
per cell boundary, and it provides a fairly tight over-estimate for the
paths traced in typical virtual environments.

Source
 Box

 Plane
Normal

Extremal Edge

Extremal
 Vertex

 Cell
Boundary
 Polygon

Figure 7: Conservative beam tracing gift wrapping step.

Third, to form polygon sequences, we extend the bidirectional
method described in Section 5 to combine beams whose sources are
boxes rather than points and to construct polygon sequences rather
than specific reverberation paths. In particular, for each pair of
beam tree nodes meeting one of the conditions, A-E, listed in Sec-
tion 5 (with beam sources extended to include axis-aligned boxes),
we construct a polygon sequence by concatenating the ordered lists
of reflections and transmissions at cell boundaries encoded in the
ancestor nodes of the two beam trees, as shown in Figure 8. Every
polygon sequence constructed in this way provides a recipe for how
a ray potentially can travel from a point in one source region to a
point in the other.

a

c

b

d

e

a

b

e

d

c

Beam Tree
 for Box B

Beam Tree
 for Box A

Polygon
Sequence

a b c d e

c
A

Valid
Path

 Invalid
Intersection

B

Figure 8: Constructing a polygon sequence by linking beam tree
nodes, and determining its validity for specific pairs of avatar loca-
tions by checking polygon intersections.

Finally, to find paths between a specific pair of avatar locations,
P1 andP2, we simply check each polygon sequence,S, associated
with the appropriate pair of source regions to see whether a ray
traveling fromP1 traveling along the prescribed sequence of reflec-
tions and transmissions can possibly reachP2. We first traverse
the polygon sequence in backwards order to construct a stack of
mirror images ofP2, whereP i2 corresponds to the image resulting
from mirroringP2 over the lasti of then reflecting polygons in the
sequence. Then, we construct the reverberation path by traversing
the polygon sequence in forwards order, while iteratively checking

Conservative
Beam Tree
 (back)

Priority−Driven
Beam Tracing
Processes

Conservative
Beam Tree
 (front)

Swap Bidirectional
 Sequence
Construction
 Processes

 Polygon
Sequences
 (back)

Swap Path
Generation
 Processes

 Polygon
Sequences
 (front)

Reverberation
 Paths
 (back)

Swap Audio
Convolution
Processes

Reverberation
 Paths
 (front)

 Motion
Prediction Viewpoint

Reset

Spatialized
 Audio

Source
 Audio

P
rio

rit
y

Q
ue

ue

Figure 9: Multiprocessing system organization.

to see whether the ray starting fromP i1 to Pn−i2 intersects every
polygon,Si, in the sequence (see Figure 8). If so, we have found a
valid reflection path fromP1 to P2 alongS (shown as a green line
in Figure 8). The length of the path is given by the distance from
P1 to Pn−1

2 , and the attenuation of sound traveling along the path
is given by the product of the attenuations at each polygon in the
sequence. Otherwise, if a ray fails to intersect one of the polygons
(e.g., the red line in Figure 8), the sequence is determined to be
in the over-estimating portion of the conservative beams, and it is
ignored.

One advantage of conservative beam tracing is that the cost of
computing each beam can be amortized over all points within its
source region. However, tracing beams from a larger region of
space is generally more expensive. So, the sizes of source regions
must be chosen carefully to maximize the effective speedups. An-
other advantage is that beam trees and polygon sequences can be
constructed asynchronously (or even off-line), and then reflection
paths can be found at very high rates. This feature is exploited in
the multiprocessing system described in the next section.

7 Time-Critical Multiprocessing

Motivated by the principles of time-critical computing, we have
developed an adaptive, real-time multiprocessing system that uses
multiple asynchronously executing processes and allocates compu-
tational resources dynamically in order to perform the highest pri-
ority beam tracing computations in a timely manner. We expand
the notion of priority-driven beam tracing to include multiple pro-
cessors working together on the beam trees for all avatars at once.
Rather than updating the beam tree for each avatar independently,
the system computes beam tree nodes in global priority order, and
thus the system can trade-off computational resources between dif-
ferent avatars dynamically. For instance, if many avatars enter the
virtual environment, available resources for computing beam tree
nodes for each avatar decreases, and the quality of computed re-
verberation paths degrades gracefully. Conversely, when avatars
leave the environment or become stationary, the quality of spatial-
ized sounds is adaptively refined. In the limit, if there is just one
avatar in the environment, all available processors concurrently ex-
pand its beam tree nodes in priority order.

Our multiprocessor implementation executes as shown in Figure
9. Each data structure (oval) is stored as a pair of “front” and “back”
buffers. Just as in computer graphics, the back buffer is used for
updates, while other processes access the front buffer. Updates to
all data structures are synchronized by mutual exclusion locks that
allow multiple readers, but only a single writer. As a result, a high
degree of concurrent processing is possible, as mutual exclusion is
required for front buffers only when the buffers are swapped.

As every avatar moves through the environment, a motion pre-
diction process determines when to swap an avatar’s beam trees
(e.g., when it has moved significantly). When the beam trees are
swapped, the new “back” beam tree is emptied and then prepared

for expansion: a new source region is assigned and a root node is
created and put on the priority queue. Asynchronously and contin-
uously, multiple beam tracing processes work on expanding “back”
beam tree nodes in global priority order. Each process iteratively
pops a node from the priority queue, computes the children of the
node, and pushes them onto the priority queue. Meanwhile, multi-
ple bidirectional polygon sequence construction processes monitor
the arrival of new beam trees in the front buffer of any avatar. When
one arrives, the “front” and “back” buffers of the appropriate poly-
gon sequences are swapped, and new “back” buffers of polygon se-
quences are updated from the new beam tree. Similarly, each time
an avatar moves, or a new polygon sequence becomes available,
path generation processes access the polygon sequences to form re-
verberation paths. Finally, source audio signals are spatialized via
software convolution with binaural impulse responses computed
for each avatar. The responses are derived by adding a pulse for
each computed reverberation path, where the delay is determined
by L/C, whereL is the length of the path, andC is the speed of
sound, and the amplitude is set to1/2(1 + cos θ)A/L, whereθ is
the angle of arrival of the pulse with respect to the normal vector
pointing out of the ear, andA is the product of all the frequency-
independent reflectivity and transmission coefficients for each of
the reflecting and transmitting surfaces along the corresponding re-
verberation path.

The nicest feature of this implementation is that it provides a
framework in which each component of the system can “do the best
it can” without slowing down the other components. In particu-
lar, the path generation processes continue to compute reverbera-
tion paths even when an avatar moves out of its beam tree’s source
region. This feature provides “extrapolation” of reverberation paths
from nearby points and is critical to providing a seamless auditory
experience when the beam tracing processes become overloaded.

8 Experimental Results

We have implemented the algorithms described in the preceding
sections in C++ and integrated them into a DVE system support-
ing communication between multiple users in a virtual world with
spatialized sound. Our current implementation supports specular
reflections and transmissions in 3D polygonal environments, and it
runs on PCs and SGIs connected by a 100Mb/s TCP network.

The system uses a client-server design. Each client provides
an immersive audio/visual interface to the shared virtual environ-
ment from the perspective of one avatar. As the avatar “moves”
through the environment, possibly under interactive user control,
images and sounds representing the virtual environment from the
avatar’s simulated viewpoint are updated on the client computer
in real-time. Communication between remote users on different
clients is possible via network connections to the server(s). Any
client can send messages to the server(s) describing updates to the
environment (e.g., the position and orientation of avatars) and the
sounds occurring in the environment (e.g., voices associated with

avatars). When a server receives these messages, it processes them
to determine which updates are relevant to which clients, it spa-
tializes the sounds for all avatars with the beam tracing algorithms
described in the preceding sections, and it sends appropriate mes-
sages with updates and spatialized audio streams back to the clients
so that they may update their audio/visual displays.

To evaluate the effectiveness of our new beam tracing methods
in the context of this system, we executed a series of experiments
with a single server spatializing sounds on an SGI Onyx2 with four
195MHz R10000 processors. In each experiment, we used different
beam tracing algorithms to compute specular reflection paths from a
source point (labeled ‘A’) to each of the three receiver points labeled
‘B,’ ‘C,’ and ‘D’ in the 3D model shown in Figure 10.

A
B C

D

Figure 10: Test model geometry and avatar locations.

8.1 Priority-Driven Beam Tracing Results

We tested the relative benefits and costs of priority driven beam
tracing by running a series of tests using the following three differ-
ent beam tracing algorithms based on different search methods for
traversing the cell adjacency graph and different termination crite-
ria:

• DF-R: Depth-first search up to a user-specified maximum
number of reflections.

• DF-L: Depth-first search up to a user-specified maximum
path length.

• P: Priority-driven search (our algorithm).

In each set of tests, we computed all early specular reflection
paths (Te = 20ms) from a source point (labeled ‘A’) to one of three
receiver points (labeled ‘B,’ ‘C,’ and ‘D’) in the 3D model shown
in Figure 10. The depth-first search algorithms, DF-R and DF-L,
were aided by oracles in these tests, as the termination criteria were
chosen manually to match the exact maximum number of reflec-
tions, R, and the maximum path length, L, respectively, of known
early reflection paths, which were predetermined in earlier tests. In
contrast, the priority-driven algorithm, P, was given no hints, and it
used only the dynamic termination criteria described in Section 4.

The bar chart in Figure 11 shows the wall-clock times (in sec-
onds) required to find all early specular reflection paths for each
combination of the three receiver points and the three beam tracing
algorithms. Although all three algorithms find exactly the same set
of early reflection paths from the source to each receiver, the com-
putation times for the priority-driven approach (the blue bars) were
between 2.6 and 4.3 times less than the next best. The reason is that
the priority-driven algorithm considers beams representing earliest
paths first and terminates according to a metric utilizing knowledge
of the receiver location, and thus it avoids computing most of the

useless beams that travel long distances from the source and/or stray
far from the receiver location.

DF−LDF−R P

B

10

20

30

40

50

60

B
ea

m
 T

ra
ci

ng
 T

im
e

(s
ec

on
ds

)

DF−LDF−R P

C
DF−LDF−R P

D

2.0 1.3 0.5

60.1

6.0
1.8

60.2 61.6

14.1

Figure 11: Beam tracing times with different traversal algorithms
and termination criteria.

The relative value of the priority-driven approach depends on
the geometric properties of the environment. For instance, all early
reflection paths to the receiver point ‘B,’ which was placed in the
same room as the source, required less than or equal to 3 specular
reflections, and the longest path was only 623 inches. These rela-
tively tight termination criteria were able to bound the complexities
of the depth first search algorithms, so the speedup of the priority-
driven algorithm is only around 2.6x over the next best. In contrast,
for receiver point ‘D,’ some early reflection paths required up to 7
specular reflections, and the longest early reflection path was 1046
inches. In this case, the priority-driven algorithm is far more effi-
cient (speedup is 4.3x) as it directs the beam tracing search towards
the receiver point almost immediately, rather than computing beams
extending radially in all directions.

The benefits of directed search are shown visually in Figure 12,
which contains two images of 10,000 beams (pink) traced in a 2D
map of Boston from a source point (square) to two different receiver
locations (circles). In this case, the distance heuristic directs beams
towards each receiver location enabling it to find complex reflection
paths (blue).

Source

Receiver

Source

Receiver

Figure 12: Visualization of beams traced for different receiver
points with priority-driven beam tracing.

8.2 Bidirectional Beam Tracing Results

To test the relative benefits and costs of the bidirectional beam trac-
ing algorithm described in Section 5, we ran a series of tests with
comparable unidirectional and bidirectional beam tracing imple-
mentations on an SGI workstation with a 195MHz R10000 pro-
cessor.

In each set of tests, we computed all specular reflection paths
from a source point (labeled ‘A’) to one of three receiver points

(labeled ‘B,’ ‘C,’ and ‘D’) up to a specified maximum number of
reflections (‘R’) in the 3D model shown in Figure 10. The uni-
directional algorithm constructed a single beam tree containing all
paths with up toR specular reflections from the source point, and
then it reported a specular reflection path for each beam contain-
ing the specified receiver point. In contrast, the bidirectional algo-
rithm constructed two beam trees for each source-receiver pair, the
first containing beams up toR/2 + 1 specular reflections from the
source, and the second containing beams up toR/2 specular re-
flections from the receiver. The two beam trees were combined to
find all Rth-order specular reflections. In this experiment, the uni-
directional and bidirectional algorithms find exactly the same set of
paths with up toR specular reflections. The goal of the experiment
is to determine which algorithm takes less total computation time.

Table 1 contains statistics collected during these tests. From left
to right, the first column (labeled ‘P’) lists which receiver point
was used. The second column (labeled ‘R’) indicates the maxi-
mum number of specular reflections computed. Then, for both the
unidirectional and bidirectional algorithms, there are three columns
which show the times (in seconds) required to compute the beam
trees (“Beam Time”), find the reflection paths (“Path Time”), and
the sum of these two (“Total Time”). Finally, the last column (la-
beled “Speedup”) lists the total time for unidirectional beam tracing
algorithm as a ratio over the total bidirectional beam tracing time.

Unidirectional Bidirectional
Beam Path Total Beam Path Total Speed

P R Time Time Time Time Time Time Up
B 3 2.02 0.01 2.03 1.04 0.03 1.07 1.9

4 5.79 0.03 5.82 2.55 0.10 2.65 2.3
5 15.01 0.07 15.08 4.23 0.50 4.73 3.5
6 31.53 0.14 31.66 8.02 1.31 9.33 3.9
7 60.26 0.24 60.50 11.95 4.43 16.39 5.0
8 100.82 0.41 101.22 21.12 9.52 30.64 4.8

C 3 2.03 0.01 2.03 0.96 0.01 0.98 2.1
4 5.81 0.01 5.82 2.49 0.04 2.54 2.3
5 14.83 0.02 14.86 3.92 0.20 4.12 3.8
6 31.38 0.05 31.42 7.82 0.54 8.37 4.0
7 60.82 0.08 60.90 11.23 1.97 13.20 5.4
8 100.89 0.14 101.03 20.56 4.13 24.69 4.9

D 3 2.03 0.00 2.03 0.62 0.01 0.62 3.3
4 5.81 0.01 5.81 2.17 0.03 2.20 2.7
5 14.94 0.01 14.95 2.47 0.12 2.59 6.0
6 31.88 0.02 31.90 6.24 0.29 6.53 5.1
7 60.31 0.04 60.35 7.10 0.92 8.02 8.5
8 100.68 0.06 100.75 16.27 1.83 18.10 6.2

Table 1: Bidirectional beam tracing statistics.

The results of this experiment show the trade-offs of the bidirec-
tional approach very clearly. First, comparing the “Beam Times”
in Table 1, we see that the bidirectional algorithm spends signif-
icantly less time tracing beams than the unidirectional algorithm.
This is because it constructs beam trees with less depth, thereby
avoiding the worst part of the exponential growth. A visualization
of this effect appears in Figure 13, which shows a comparison of 2D
beams traced (a) unidirectionally and (b) bidirectionally to find the
same reflection paths (shown in blue). Note how many more beams
are traced in the unidirectional case. Second, comparing the “Path
Times,” we see that the bidirectional algorithm spends significantly
more time generating reverberation paths. This is because it must
perform intersection tests for each pair of beams reflecting off the
same surface. Overall, the bidirectional beam tracing algorithm is
significantly faster than the unidirectional algorithm, with speedups
ranging from 4.8x to 6.2x for 8 specular reflections in these experi-
ments.

P1

P2

(a) Unidirectional
(59,069 beams)

P1

P2

(b) Bidirectional
(15,078 pink beams + 24,665 blue beams)

Figure 13: Visualization of beams traced to find specular reflec-
tion paths between points P1 and P2 with (a) unidirectional and (b)
bidirectional methods. The beams emanating from location P1 are
shown in pink, while the ones from P2 are shown in cyan. The blue
lines represent specular reflection paths.

8.3 Amortized Beam Tracing Results

We studied the trade-offs of the amortized beam tracing approach
described in Section 6 by running a set of tests in which conserva-
tive beams were traced from source regions with varying sizes to
find specular reflection paths between a source point (labeled ‘A’)
and one of the three receiver points (labeled ‘B,’ ‘C,’ and ‘D’) in
the 3D model shown in Figure 10.

During each test, cubes with width “Box Size” were constructed
around both the source point and one of the receiver points. Then,
the following three steps were used to compute specular reflection
paths between the two points.

1. Trace conservative beams from both source regions up to 3
specular reflections.

2. Combine the beams to form polygon sequences containing
potential paths with up to 5 specular reflections.

3. Process the polygon sequences to find all valid 5th-order spec-
ular reflection paths from the source point to the receiver.

Table 2 shows times (in seconds) measured during each test. The
first column (“P”) lists the receiver point, and the second (“Box
Size”) indicates the source box width in inches. The next four
columns show the times required for beam tracing (“Beam Time”),
polygon sequence construction (“Seq Time”), and path generation
(“Path Time”), respectively. The column labeled “Amort Time”
represents the average wall-clock time required for the amortized
algorithm to compute all 5th-order specular reflection paths from
the source to the receiver at even intervals separated by 1/2 inch,
while the last column (labeled “Speedup”) lists the speedup of the
amorized beam tracing algorithm as compared to the bidirectional
algorithm described in the previous section (i.e., “Box Size” = 0).

Scanning down the rows of the table, we see that the times re-
quired for all three steps increase with larger source regions, first
slowly, and then very rapidly. This growth pattern matches the num-
ber of beams traced in each test. As the source region grows larger,
a larger portion of the space can be reached by reflection paths, and

Box Beam Seq Path Amort
P Size Time Time Time Time Speedup
B 0 4.2 0.48 0.004 4.691 1.0

2 4.6 0.57 0.006 2.593 1.8
4 5.1 0.64 0.006 1.423 3.3
8 5.9 0.81 0.008 0.840 5.6
16 8.9 1.48 0.013 0.651 7.2
32 83.3 5.89 0.054 2.787 1.7

C 0 3.9 0.20 0.001 4.116 1.0
2 4.3 0.23 0.001 2.264 1.8
4 4.6 0.27 0.002 1.214 3.4
8 5.4 0.39 0.005 0.730 5.6
16 8.2 0.73 0.012 0.561 7.3
32 13.9 3.07 0.049 0.531 7.8

D 0 2.5 0.12 0.000 2.597 1.0
2 2.7 0.12 0.000 1.405 1.8
4 2.8 0.14 0.001 0.739 3.5
8 3.4 0.20 0.001 0.448 5.8
16 5.2 0.35 0.004 0.344 7.5
32 10.1 1.55 0.021 0.364 7.1

Table 2: Amortized beam tracing statistics.

more beams must be traced (see Figure 14). Accordingly, more
polygon sequences are constructed, and they all must be processed
for each path generation step. We must be careful not to choose
source regions that are so big that the resulting beam tree and the
list of polygon sequences are grossly over-approximating.

The benefits of conservative beam tracing are reaped by amor-
tization as the beam trees and polygon sequences are re-used for
more and more nearby avatar locations as the source regions grow.
The result of this trade-off between extra processing versus amor-
tization is shown in the right-most column of the table (labeled
“Speedup”). In this experiment, we see that the competing factors
are balanced most advantageously when the box sizes have width
around 16 inches. In this case, the conservative beams do not over-
estimate exact ones by too much, and thus they require only 2.1x
more time to compute, while the benefits of amortization can be re-
alized over 16 distinct avatar locations separated by 1/2 inch as the
avatar walks from the center of the box, resulting in an effective 7x
speedup.

(a) Box Size = 0
(4,686 beams)

(c) Box Size = 32
(12,242 beams)

Figure 14: Beams traced for up to 2 reflections from source regions
of different sizes centered at point ‘A.’

8.4 Time-Critical Multiprocessing Results

We studied the time-critical multiprocessing aspects of our sys-
tem by running tests with multiple avatars moving simultaneously
through a virtual environment (shown in Figure 15) while log-
ging statistics regarding the system’s performance. During these
tests, each of four avatars moved autonomously along a path which

caused it to pass very close to other avatars sometimes, and to wan-
der alone at others.

(a) T = 65 (b) T = 90

Figure 15: Visualization of adaptive real-time beam tracing (circles
represent number of beam tree nodes).

Figure 16 contains a plot indicating the number of nodes in each
of four avatars’ beam trees during a test executing on an SGI Onyx2
workstation with 4 195 MHz R10000 processors. Each of the four
curves represents a single avatar, and the vertical position of the
curve at every time step indicates the amount of computation the
system is expending updating the beam tree for the avatar. Figure
15 shows the status of the simulation at (a) T=65 and (b) T=95. For
visualization purposes, the radius of the circle around each avatar
in these images matches the corresponding height in the plot.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

40 60 80 100 120

B
ea

m
s

P
er

 A
va

ta
r

Time (seconds)

Figure 16: Plot of number of nodes in the beam tree for each avatar
showing adaptive real-time beam tracing.

The plot clearly shows the adaptive and time-critical natures of
our multiprocessing system. In some situations, such as the one oc-
curring at T=65, two avatars are in close proximity, while the others
are off by themselves. Accordingly, the system allocates most of its
resources to computing beam trees for those two avatars (blue and
purple) as they interact (i.e., the blue and purple lines are relatively
high). At other times in the simulation, different avatars are inter-
acting and the system adapts dynamically. Yet, the total number of
beams traced for all avatars (i.e., the sum of the heights for all lines
in the plot) remains approximately constant across all time steps.
This feature reflects the time-critical nature of our real-time algo-
rithm.

9 System Limitations

Our system is a research prototype, and it has several limitations.
First, the 3D model must comprise only planar polygons because
we do not model the transformations for beams as they reflect off
curved surfaces. Nor do we trace beams along paths of refraction,
diffraction, or diffuse reflection, which are very important acousti-
cal effects. However, we think that the conservative beam tracing
approach may be an appropriate framework for extending our sys-
tem to handle these situations.

Second, our methods are only practical for coarse 3D models
without highly faceted surfaces, such as the ones often found in
acoustic modeling simulations. The difficulty is that beams get
fragmented by cell boundaries as they are traced through a cell
adjacency graph. For this reason, we are not optimistic that our
implementation can be easily adapted to model light transport for
photorealistic image synthesis. However, the algorithms probably
can be applied effectively in other application areas concerned with
simulation of wave phenomena (e.g., radio frequency propagation).

Third, the major occluding and reflecting surfaces of the virtual
environment must be static through the entire execution. If any
acoustically significant polygon were to move, the cell adjacency
graph would have to be updated incrementally.

Finally, our implementation does not include sophisticated mod-
els for acoustical reflectance distribution functions or for direction-
ality of audio sources and receivers. For instance, we currently rep-
resent the reflectance of each surface with an angle-independent
and frequency-independent absorption coefficient. However, since
we compute reverberation paths explicitly, adding these auraliza-
tion features is relatively straight-forward.

10 Conclusion

In this paper, we have described three beam tracing algorithms well-
suited for geometric acoustic modeling in a distributed virtual envi-
ronment system. These algorithms offer two important advantages
over previous approaches: 1) they are much faster, and 2) they sup-
port real-time computing.

To summarize the speedup results, the priority-driven algorithm
accelerates searches for early reflection paths by 2.6x – 4.3x; the
bidirectional approach runs 4.8x – 6.2x faster than a compara-
ble unidirectional algorithm; and, amortized beam tracing achieves
speedups of 7.2x – 7.5x. Moreover, our multiprocessing system
achieves nearly linear speedups for up to at least four processors.
Overall, the speedup achieved combining all these algorithms is
approximately two orders of magnitude over previous beam trac-
ing systems.

Our adaptive multiprocessing system utilizes these new beam
tracing algorithms to support many features essential for a real-time
system, including time-critical updates, graceful degradation, and
adaptive refinement. Moreover, the system performs asynchronous
beam tracing computations, while reverberation paths are gener-
ated, and even extrapolated, at very high update rates. Overall,
our system is able to match the accuracy of many previous off-line
acoustic modeling systems while executing in real-time.

Acknowledgements

The authors thank Gary Elko, Mohan Sondhi, Jim West, and Perry
Cook for their valuable discussions. We would also like to acknowl-
edge Nadia Magnenat-Thalmann, Daniel Thalman, and Eric Peta-
jan for use of the images in Figure 1.

References
[1] Allen, J.B., and D.A. Berkley, Image Method for Efficiently Simu-

lating Small-Room Acoustics,J. Acoust. Soc. Am., 65, 4, Apr 1979,
943-950.

[2] Arvo, James. Backward Ray Tracing.Developments in Ray Tracing
Course Notes,SIGGRAPH 86, 1986.

[3] Begault, Durand,3D Sound for Virtual Reality and Multimedia,Aca-
demic Press, 1994.

[4] Blanchard, C., S. Gurgess, Y. Harvill, J. Lanier, A. Lasko, M. Ober-
man, and M. Teitel, Reality Built for Two: A Virtual Reality Tool.
ACM SIGGRAPH Special Issue on 1990 Symposium on Interactive
3D Graphics, (Snowbird, Utah), 1990, 35-36.

[5] Borish, Jeffrey. Extension of the Image Model to Arbitrary Polyhedra.
J. Acoust. Soc. Am., 75, 6, June, 1984, 1827-1836.

[6] Briere, Normand, and Pierre Poulin, Hierarchical View-Dependent
Structures for Interactive Scene Manipulation,Computer Graphics
(SIGGRAPH 96), 83-90.

[7] Chattopadhyay, Sudeb, and Akira Fujimoto, Bi-directional Ray Trac-
ing, Computer Graphics 1987 (Proceedings of CG International ’87),
Springer-Verlag, Tokyo, 1987, 335-343.

[8] Dadoun, N., D.G. Kirkpatrick, and J.P. Walsh. The Geometry of Beam
Tracing.Proceedings of the Symposium on Computational Geometry,
Baltimore, June, 1985, 55-61.

[9] Davison, B.Neutron Transport Theory.Oxford University Press, Lon-
don, 1957.

[10] Drettakis, George, and Francois Sillion. Interactive Update of Global
Illumination Using a Line-Space Hierarchy.Computer Graphics
(SIGGRAPH 97), 1997, 57-64.

[11] Durlach, N.I., R.W. Pew, W.A. Aviles, P.A. DiZio, and D.L. Zeltzer.
Virtual Environment Technology for Training (VETT).Report No.
7661, Bolt, Beranek, and Newmann, Cambridge, MA, 1992.

[12] Durlach, N.I, and A.S. Mavor, editors,Virtual Reality Scientific and
Technological Challenges,National Research Council Report, Na-
tional Academy Press, Washington, D.C., 1995.

[13] Foster, S.H., E.M. Wenzel, and R.M. Taylor. Real-time Synthesis of
Complex Acoustic Environments.Proc. IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics,1991.

[14] Funkhouser, Thomas A., Ingrid Carlbom, Gary Elko, Gopal Pingali,
Mohan Sondhi, and Jim West A Beam Tracing Approach to Acoustic
Modeling for Interactive Virtual Environments.Computer Graphics
(SIGGRAPH ‘98), Orlando, FL, July, 1998, 21-32.

[15] Hart, P.E., N.J. Nilsson, and B. Raphael, A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,IEEE Transactions
on SSC, Vol. 4, 1968.

[16] Hartman, Jed, Josie Werneck,VRML 2.0 Handbook, Addison-Wesley,
ISBN 0-201-47944-3, August 1996.

[17] Hartmann, W.M., Listening in a Room and the Precedence Effect,
Binaural and Spatial Hearing in Real and Virtual Environments,
edited by Robert H. Gilkey and Timothy R. Anderson, Lawrence Erl-
baum Associates, 1997.

[18] Heckbert, Paul, and Pat Hanrahan. Beam Tracing Polygonal Objects.
Computer Graphics(SIGGRAPH 84), 18, 3, 119-127.

[19] Heckbert, Paul. Adaptive Radiosity Textures for Bidirectional Ray
Tracing.Computer Graphics(SIGGRAPH 90), 24, 4, 145-154.

[20] Immel, David S., Michael F. Cohen, and Donald P. Greenberg. A Ra-
diosity Method for Non-Diffuse Environments.Computer Graphics
(SIGGRAPH 85), 19, 3, 133-142.

[21] Kleiner, Mendel, Bengt-Inge Dalenback, and Peter Svensson. Aural-
ization – An Overview.J. Audio Eng. Soc., 41, 11, Nov 1993, 861-
875.

[22] Krockstadt, U.R.Calculating the Acoustical Room Response by the
Use of a Ray Tracing Technique, J. Sound and Vibrations, 8, 18, 1968.

[23] Kuttruff, Heinrich Room Acoustics, 3rd Edition, Elsevier Science,
London, England, 1991.

[24] Lafortune, E.P., and Y.D. Willems, Bi-directional path tracing,Com-
puGraphics, Alvor, Portugal, 1993, 145-153.

[25] Lewins, Jeffery.Importance, The Adjoint Function: The Physical Ba-
sis of Variational and Perturbation Theory in Transport and Diffusion
Problems.Pergamon Press, New York, 1965.

[26] Moore, G.R.An Approach to the Analysis of Sound in Auditoria.
Ph.D. Thesis, Cambridge, UK, 1984.

[27] Quake, id Software, Mesquite, TX, 1996.
[28] Smits, Brian, James R. Arvo, and David H. Salesin. An Importance-

Driven Radiosity Algorithm.Computer Graphics(SIGGRAPH 92),
26, 2, 273-282.

[29] Sony Corporation,Community Place Browser Manual, 1996.
[30] Teller, Seth., and Carlo S´equin, Visibility Preprocessing for Interac-

tive Walkthroughs,Computer Graphics(SIGGRAPH 91), 25, 4, 61-
69.

[31] Teller, Seth Computing the Antiumbra Cast by an Area Light Source.
Computer Graphics(SIGGRAPH 92), 26, 2, 139-148.

[32] Teller, SethVisibility Computations in Densely Occluded Polyhedral
Environments.Ph.D. thesis, Computer Science Division (EECS), Uni-
versity of California, Berkeley, 1992. Also available as UC Berkeley
technical report UCB/CSD-92-708.

[33] Tsingos, Nicolas, and Jean-Dominique Gascuel. A General Model
for Simulation of Room Acoustics Based On Hierarchical Radiosity.
Technical Sketches,SIGGRAPH 97 Visual Proceedings, 1997.

[34] Veach, Eric, and Leonidas Guibas, Bidirectional Estimators for Light
Transport,Fifth Eurographics Workshop on Rendering, Darmstadt,
Germany, June, 1994, 147-162.

[35] Zyda, Michael J., David Pratt, John Falby, Chuck Lombardo, and
Kristen Kelleher, The Software Required for the Computer Genera-
tion of Virtual Environments.Presence, 2, 2 (March 1993), 130-140.

