
Contents

1 Introduction 4

2 Virtual Environments 6

2.1 Introduction : 6
2.2 Immersion : 7
2.3 The Head-Mounted Display : : : : : : : : : : : : : : : : : : : 8

3 Stereoscopy 11

3.1 Background : 11
3.2 Depth perception : 13
3.3 Possible errors : 14

3.3.1 General errors : 15
3.3.2 HMD speci�c errors : : : : : : : : : : : : : : : : : : : 19

3.4 A computational model for the optics in an HMD : : : : : : : 22
3.4.1 Optics model for a single eye : : : : : : : : : : : : : : 22
3.4.2 Optics model for two eyes : : : : : : : : : : : : : : : : 24

4 The Stereoscopy Optimization System 33

4.1 Introduction : 33
4.2 Correcting the errors : 33

4.2.1 General errors : 34
4.2.2 HMD speci�c errors : : : : : : : : : : : : : : : : : : : 34

4.3 Implementation : 36
4.3.1 Hardware and software con�guration : : : : : : : : : : 36

1

CONTENTS 2

4.3.2 Initial calculations : 37
4.3.3 Setting the output window : : : : : : : : : : : : : : : 41
4.3.4 Setting up the transformations : : : : : : : : : : : : : 42
4.3.5 Rendering the object : : : : : : : : : : : : : : : : : : : 43
4.3.6 Precompute and predistort : : : : : : : : : : : : : : : 46
4.3.7 Notes on extra features : : : : : : : : : : : : : : : : : 51

5 Tests 54

5.1 Introduction : 54
5.2 Depth in an HMD : 54
5.3 Test description : 56

5.3.1 Stereoscopic viewing test : : : : : : : : : : : : : : : : 56
5.3.2 IPD measurement : 57
5.3.3 IPD test using special test object : : : : : : : : : : : : 57
5.3.4 Test using converging versus parallel viewlines : : : : 58
5.3.5 Predistortion test using regular grid : : : : : : : : : : 58

5.4 Test results : 59

6 Discussion and conclusion 62

A Implementation aspects 65

B Figure sources 68

C Acknowledgements 69

Chapter 1

Introduction

In current Virtual Environment systems, the stereoscopic image generated
using a Head-Mounted Display is far from optimal. Many parameters must
be taken into account if the goal is to present a correct stereoscopic image
to the viewer.

This report describes the issues involved when trying to achieve this
goal. It is the result of a research project at the Physics and Electronics
Laboratory of the Dutch organization for Applied Research, and also serves
as a Master's Thesis for graduation at Leiden University.

The goals of our project were:

� identi�cation of parameters in
uencing depth perception in a Head-
Mounted Display

� development of a test system allowing independent manipulation of all
parameters

� implementation of a test enabling setting of user-dependent parameters
inside a Virtual Environment

The next chapter de�nes the typical Virtual Environment system setup
and the role of the Head-Mounted Display. Chapter 3 describes the theory
behind stereoscopic viewing. Section 3.2 illustrates the errors that occur if a
parameter is not taken into account. Also a computational model is reviewed

4

CHAPTER 1. INTRODUCTION 5

that incorporates the necessary parameters. In the following chapter the
actual implementation of the test system is described. Chapter 5 considers
the tests that were conducted with our system. A discussion and conclusion
chapter ends the report.

The appendices contain the original test system requirements de�nition,
the original design and speci�cation, implementation aspects, the user man-
ual, �gure sources and acknowledgements.

Chapter 2

Virtual Environments

2.1 Introduction

Some people hold the opinion that our belief that we are somewhere, and
that the things around us actually exist, is solely derived from our sensory
perception. Our eyes see the surroundings, our ears hear the sound that is
produced in it, our nerves signal that we are for example sitting in a chair,
etcetera. This sensory information changes continuously in response to our
actions, in a way we have grown accustomed to. If it is possible to replace our
sensory data with synthetically generated data that responds to our actions
the way we expect it to, we will perceive another environment. This is not
a real environment, and is called a virtual environment (VE). The goal in a
VE is to make us forget the environment we were in before we entered the
virtual one. To summarize:

A virtual environment is a simulation of an environment, created
by in
uencing one or more human senses in the same way as in
a real environment, in order to invoke a strong sense of being in
another one.

6

CHAPTER 2. VIRTUAL ENVIRONMENTS 7

2.2 Immersion

Of our �ve senses our visual system produces by far the most information,
and consequently is the one that contributes most to our belief in reality. If
we manage to "convince" our visual system, we will have succeeded in con-
structing the most important part of our simulation of reality. An important
condition is that the perceived �eld of view (FOV) is large enough to make
the viewer feel immersed in a virtual environment.

The size of the FOV our both eyes observe when looking straight ahead is
about 180 degrees horizontally and 135 degrees vertically. A single eye has a
horizontal FOV of about 150 degrees [Val66]. Approximately the central 20
degrees of each single eye FOV is projected onto the fovea, the most sensitive
part of the retina (see Figure 2.1).1 The visual axis is the line that connects
the center of the eye lens and the center of the fovea.

optical axis

visual
axis retina

fovea

Figure 2.1: The retina and fovea in the eye

1The fovea is in fact a central area of 5.2 degrees, the next 3.4 degrees is the parafovea

and the next 10.4 the perifovea [WS82].

CHAPTER 2. VIRTUAL ENVIRONMENTS 8

central area

near and middle
periphery

far periphery

inner (nasal) side outer side

eye

Figure 2.2: The various parts of the FOV

The near periphery subtends an angle of about 30 degrees, the middle pe-
riphery 50 degrees. The remaining 100 degrees are part of the far periphery,
consisting of about 35 degrees on the inner (nasal) side of the eye, and 65 on
the outer side (see Figure 2.2) [WS82]. Here viewing resolution is smallest,
however it does serve in detecting movement.

Howlett suggests that in order to make a viewer feel immersed in a virtual
environment, at least a binocular FOV of 90 degrees should be provided (see
Figure 2.3) [How91]. 2

2.3 The Head-Mounted Display

Currently the most popular tool used in generating an immersive visualiza-
tion is a Head-Mounted Display (HMD). An HMD is a device that contains
two small computer display screens, one for each eye. Between each eye and

2Compare the 10 degrees FOV of a televison (screen diagonal 67 cm, viewing distance
3 m).

CHAPTER 2. VIRTUAL ENVIRONMENTS 9

Figure 2.3: A binocular FOV of 90 degrees

its screen a lens system is positioned that magni�es the screen image, to
enlarge the FOV. A position- and orientation-sensor is located on the HMD
and continuously transmits its data to a computer. The computer incorpo-
rates this information of the viewer's position and viewing direction in the
rendering process, and constructs a left- and right-eye image of a Virtual
Environment. These images are in turn sent to the displays in the HMD
(see Figure 2.4).

CHAPTER 2. VIRTUAL ENVIRONMENTS 10

display screens

optics

eyes

computer

HMD

sensor

optical
axis

Figure 2.4: The HMD in a VE system

Chapter 3

Stereoscopy

3.1 Background

When human eyes look at an object in space, several factors contribute to
the fact that they see a sharp, three-dimensional object [Hod92] [Fer87].

� The eyes turn towards the object: this is called convergence of view-
lines, or convergence for short. The convergence angle is the angle
between the viewlines.

� By bulging or
attening the eye lenses their focal length is changed, in
order to focus on the object. This is called accomodation.

� The left- and right-eye are horizontally separated by the Inter-Pupillary
Distance (IPD), hence see the object at a di�erent angle. Consequently
two (horizontally) di�erent images are projected on the respective reti-
nas. This is called binocular disparity or retinal disparity. The brain
combines these images into one that is perceived as three-dimensional,
or "having depth". This is called stereo vision or stereopsis. Depth is
discussed further in Section 3.2.

If the images for the eyes are to be generated on a display screen, it is
important to take the above factors into account. The result must be that

11

CHAPTER 3. STEREOSCOPY 12

object

convergence angle

eyeretina
lens

viewline

α

IPD

Figure 3.1: Eyes looking at an object in real life

orthostereoscopy is achieved. Robinett and Rolland de�ne orthostereoscopy
as

constancy, as the head moves around, of the perceived size, shape
and relative positions of the simulated objects [RR91].

Howlett formulates the same de�nition in terms of constancy of the az-
imuth and elevation of points [How91]. Sutherland recognized the impor-
tance of orthostereoscopy back in 1968:

The image presented by the three-dimensional display must change
in exactly the way that the image of a real object would change
for similar motions of the user's head [Sut68].

In Section 3.3 a discussion is presented on the errors that can occur
when attempting to achieve orthostereoscopy in an HMD. In Section 3.4
a computational model of an HMD is reviewed which has been used to
implement orthostereoscopic image generation in our system.

CHAPTER 3. STEREOSCOPY 13

3.2 Depth perception

As mentioned in the previous section, the image projected on the retina
di�ers for each eye, the reason being that each eye looks at an object at a
di�erent angle.

When focus changes from a speci�c object to another object that is
closer or further away, the convergence angle changes, resulting in a di�erent
horizontal disparity between the projected image in the left and right eye. If
the di�erence is discernable by the eyes, the other object is perceived as being
closer or further. The smallest observable di�erence (speci�ed as the smallest
convergence angle corresponding with the change that can be distinguished)
is called the stereo acuity.

Assuming a certain stereo acuity � (say 1') and a certain IPD (say 65
mm), the largest distance D at which an object can be perceived as closer
than an object at in�nity can be calculated (see Figure 3.2). As can be seen
D � (IPD= tan�). For our mean values D � 0:065= tan10 � 223 m.

D

IPD

α

Figure 3.2: The furthest object in front of in�nity

CHAPTER 3. STEREOSCOPY 14

From an object at distance D we can move closer in angle steps of �,
until we are at a distance of for instance 30 cm, and count each depth step:
a depth step moves to the nearest point that can be perceived as being at
another distance, hence the point di�ering � in convergence angle. Ferwerda
uses the number of depth steps as a measure for the amount of depth in a
stereo image: twice as many depth steps means twice as much depth [Fer87].
The number of depth steps s beyond a point at distance d can be calculated
as follows:

� = arctan(IPD=d)

s = �=�

(with � the convergence angle for distance d and � the stereo acuity). With
a stereo acuity of 1', the number of depth steps beyond 30 cm is about 730.
Note that the depth steps are smallest at close distances: about 92 % of all
steps beyond 30 cm lie at distances closer than 4 meters. Consequently this
is the most important area in depth perception.

In a stereo photo viewer, Ferwerda suggests a best obtainable acuity of
1.5', resulting in about 490 depth steps beyond 30 cm. So we can say that
the amount of depth in a stereo photo is about two thirds of the depth in a
real stereo image.

In section 5.2 we discuss depth in an HMD.

3.3 Possible errors

Currently in most VE systems stereo images are produced without taking
many factors that in
uence the stereoscopic quality into account. Instead
of measuring parts of the system to create a better image, the standard
approach is that parameters are experimentally adjusted. This results in an
image that has far from optimal depth. In this section we examine the errors
that occur when using a standard approach.

The possible errors are classi�ed into two categories:

� general, not HMD speci�c, errors

� HMD speci�c errors

CHAPTER 3. STEREOSCOPY 15

Errors of the �rst category result from incorrect simulation of reality, in
other words of the way eyes see in real life. Errors of the second category
result from not or incorrectly incorporating the properties of the HMD itself
in the rendering calculations.

3.3.1 General errors

accomodation does not correspond with convergence

Eyes are accustomed to convergence and accomodation being correlated: for
every distance there is an appropriate convergence angle (such that the eyes
are turned towards an object at that distance), and accomodation (to bring
the object into focus)(see Figure 3.3).

α

object

close object, large convergence angle
and accomodation (lenses bulged a lot)

β

object

object far away, smaller convergence
and accomodation (lenses flatter)

Figure 3.3: Convergence and corresponding accomodation

An image on a display screen normally is positioned at a �xed distance,
hence the eyes have a constant accomodation. In Figure 3.4 the eyes converge
to the image of the object, but must remain accomodated at the image of
the screen.

CHAPTER 3. STEREOSCOPY 16

image of
screen

α

image of
object

Figure 3.4: Constant accomodation on the image of the screen

Veron calls this phenomenon an accomodation/convergence con
ict [VSLC90].
Valyus suggests a maximum allowable deviation from the proper convergence
angle of 1.6 degrees.1 Beyond that angle doubling may occur: although the
intention is to make the viewer see for example one pixel, "the impression
of two separate points is generated" [Val66]. Robinett and Rolland suggest
the user must learn to decouple accomodation and convergence [RR91].

incorrect projection

� projection assuming parallel viewlines

For e�ency reasons, the perspective projection may be implemented
assuming parallel view lines (see Figure 3.5). Note that this conver-
gence angle never corresponds with reality, except when focus is at
in�nity (for instance, when looking at a star).

1This is a tight restriction: assuming an image distance of for instance 40 cm, the
allowable object distance would be in the range 33 : : : 48 cm.

CHAPTER 3. STEREOSCOPY 17

viewline

object

Figure 3.5: Parallel view lines

� on-axis projection

The projection assuming parallel viewlines may be extended to account
for the convergence error. Hodges describes an algorithm for this on-
axis projection [Hod92]. He uses one center of projection and horizontal
translations of the data. Roughly, the algorithm works as follows (see
Figure 3.6):

for the right-eye view:

1. translate the object data to the left by IPD=2

2. standard perspective projection

3. pan the resulting image back

and the other way round for the left-eye view.

The Field Of View of on-axis projection is the same as for a single
perspective projection. Williams and Parrish show that for example

CHAPTER 3. STEREOSCOPY 18

for a 40 degrees horizontal FOV per eye, the binocular FOV is 35 %
smaller than it would be if an o�-axis projection had been used [WP90].

� o�-axis projection

The o�-axis projection most closely corresponds with reality, because
it assumes converging instead of parallel view lines [Hod92]. The only
problem here is to �nd out on which object the viewer is focusing,
because this determines the convergence angle.

CHAPTER 3. STEREOSCOPY 19

� rotation

A method sometimes used to generate the left- and right-eye view is to
rotate the left image counter-clockwise and the right image clockwise by
a few degrees. This usually introduces vertical parallax (displacements)
in the image, which causes severe eyestrain [Hod92].

incorrect Inter-Pupillary Distance

The IPD of a viewer determines how much he must converge his eyes to
focus on an object at a speci�c distance. In Figure 3.7 this is illustrated
by showing two viewers with a di�erent IPD looking at an object at
the same distance. If a standard IPD is assumed in the rendering
computations (e.g. 65 mm), a viewer with a larger IPD would perceive
the object at too large a distance, and someone with a smaller IPD
would think the opposite.

3.3.2 HMD speci�c errors

Next the HMD speci�c errors are considered. Recall the VE system given
in Chapter 2, shown again in Figure 3.8.

positional errors

If the optical axes were parallel, and passed through the center pixels of the
screens and through the centers of the eyes, turning on the center pixels
would show a dot positioned at in�nity. But the axes may not be parallel,
the screen centers may be o�set from the axes, and the eyes may be o�set
as well.

CHAPTER 3. STEREOSCOPY 20

� failure to account for angle between optical axes

When the optical axes are not parallel, this has to be corrected by
a rotation of the left- and right-eye image, such that it balances out
the rotation. The situation is pictured in Figure 3.16 of Section 3.4.2,
where a computational model for two eyes inside an HMD is reviewed.

� failure to incorporate position of screens

If the screen centers are o�set from the optical axes, all displayed data is
o�set. In case of a horizontal o�set, the eyes need a di�erent (incorrect)
convergence angle to focus on an object. A vertical o�set results in a
height error.

� failure to incorporate Inter-Pupillary Distance

In addition to using the IPD in the projection, it is also important with
respect to the HMD. If the viewer has an IPD equal to the distance
between the optical axes, the images are positioned correctly: each
center of projection is located exactly in front of each eye. If the IPD
di�ers from this distance, the images are in a horizontally incorrect
position, resulting in a convergence error. In an HMD with mechanical
IPD adjustment this problem does not occur, as the screens themselves
are moved to get the centers positioned right.

� incorrect Field Of View

The Field Of View used in the projection computations should be the
same as the FOV actually experienced by the viewer, i.e. the FOV
actually subtended by the images of the displays screens. If the com-
putational FOV is too small, then the displayed object will appear too
large, and vice versa.

CHAPTER 3. STEREOSCOPY 21

There are two methods to determine the FOV. The �rst is to calculate
it from the lens system speci�cations and the HMD build speci�cations.
The second is analytical ray tracing through the optics: from the exact
optics speci�cations (for each lens in the lens system) the exact path
of a ray passing each lens surface is calculated. Robinett and Rolland
used both methods to determine the FOV for the HMD and found a
small di�erence [RR91]. The results of the second method can be found
in their article. The �rst method is reviewed in Section 3.4.2.

optics errors

� non-linear distortion

When a wide Field Of View is warped onto a
at plane, distortion is
necessary [How91]. The LEEP optics used in many HMDs use a �sh-
eye like transformation to be able to project a large FOV onto a plane
(see Figure 3.9). This means that the largest part of the image area is
devoted to the central part of the FOV, and that the peripheral area
is compressed into the side of the image. This corresponds with the
relative importance of the various parts of the human FOV.

When a
at plane is seen through the optics, the magni�cation is larger
for points that are further from the optical axis. This is called a pos-

itive or pin-cushion distortion, and causes lines that are straight on
the screen to be curved in the virtual image. Figure 3.10 is a graph
showing the LEEP optics relative magni�cation for each distance from
the optical axis (with the distance normalized between 0 and 1, 1 being
the furthest point still viewable through the optics).

In Section 3.4.1 a model for the distortion is discussed, as well as an
approximate inverse distortion to correct the error (which is a negative
or barrel distortion). The screen image is predistorted with this cor-
rectional distortion, in order to balance out the optics distortion. The
e�ect of predistortion is shown in Figure 3.11.

� chromatic aberration

CHAPTER 3. STEREOSCOPY 22

Di�erently coloured light rays di�ract di�erently in the lens system,
causing lateral chromatism, or "chromatic di�erence of magni�cation"
[How91]. In the LEEP optics, blue is magni�ed about 1 % more than
red, with green in between. This error is especially noticable in the
peripheral part of the FOV.

3.4 A computational model for the optics in an

HMD

In order to compute correct projections of the 3D image space, several HMD
speci�c parameters need to be incorporated in the calculations. A compu-
tational model for the optics in an HMD given by Robinett and Rolland
will aid in determining these parameters [RR91]. This model is extensively
reviewed in this section.

3.4.1 Optics model for a single eye

First, an optics model for a single eye is given in Figure 3.12. From this
model an approximation for the non-linear distortion is derived.

The variables shown in Figure 3.12 denote:

rs radial position of a screen pixel, i.e. the distance between a pixel and the
optical axis (point As in Figure 3.12)

rv radial position of the virtual image of a screen pixel

In the speci�cation of the optics the maximum object �eld radius, or ws

is given: this is the maximum distance between a point on the object and
As, such that the point still can be seen through the optics. Its virtual image
counterpart is wv, the maximum image �eld width. Using these values, rs
and rv are normalized:

rsn = rs=ws

rvn = rv=wv

CHAPTER 3. STEREOSCOPY 23

If the optics had no distortion, then rvn = rsn. But they have, so a correction
term must be added:

rvn = rsn + kvsr
3

sn (3.1)

This is a 3rd-order polynomial approximation. The coe�cient kvs is a mea-
sure for the amount of distortion present.

Given that r2sn = x2sn+y
2

sn and r
2

vn = x2vn+y
2

vn (see Figure 3.13), Equation
3.1 can be written as:

(xvn; yvn) = f(1 + kvs(x
2

sn + y2sn))xsn; (1 + kvs(x
2

sn + y2sn))ysng (3.2)

These are the coordinates of a point in image space, expressed in its
coordinates in screen space, taking distortion into account. However, we
need to �nd the inverse of this function. An exact closed-form expression is
not possible, but a 3rd-order polynomial approximation is:

rsn = rvn + ksvr
3

vn (3.3)

Robinett and Rolland show that this approximation is at worst about 2 %
o� from the correct value2. Equation 3.3 can again be rewritten as:

(xsn; ysn) = f(1 + ksv(x
2

vn + y2vn))xvn; (1 + ksv(x
2

vn + y2vn))yvng (3.4)

The resulting screen coordinates are

(xs; ys) = (wsxsn; wsysn)

These have to be transformed into device coordinates using the o�set of the
screen center with respect to the optical axis, and the size of a pixel. There is
a �nite number of possible (xs; ys) values. Instead of computing these values
every time a frame is generated, all corrected values can be precomputed
and stored in a table. In Section 4.3.6 an implementation scheme for the
precomputing and predistortion stages is discussed.

2This is an estimated error, measured from a graph in the article

CHAPTER 3. STEREOSCOPY 24

3.4.2 Optics model for two eyes

The model discussed so far considered just one eye. We need to expand the
model to include two eyes in order to

� calculate a correct FOV

� incorporate the o�set of the screen centers with respect to the optical
axes.

Calculate a correct FOV

From the positions of the display screens and the optics speci�cation we can
calculate the left- and right-FOV. Parameters that are used are:

Ty vertical o�set from the optical axis of top of display screen
By idem bottom
Ix horizontal o�set from the optical axis of the inner side of the left display screen
Ox idem outer side

The calculation is given below for Ty:
3.

1. rs = Ty

2. rsn = rs=ws

3. rvn = rsn + kvsr
3

sn

4. rv = rvnwv

5. � = arctan(rv=zv) (see Figure 3.14)

Given �T ; �B; �I and �O we determine:

FOVV = �T + �B

3Note that ws, wv and zv depend on the eye relief der, the distance between the eye
and the optics. The eye relief depends on the face shape of the viewer.

CHAPTER 3. STEREOSCOPY 25

FOVH = �I + �O

We also want to compute the binocular FOV (FOVbin) and the over-
lapped FOV (FOVov). First we show the case with parallel optical axes in
Figure 3.15.

Now we see that FOVbin = 2�O and FOVov = 2�I . When the opti-
cal axes are not parallel, these values are di�erent (see Figure 3.16). Here
FOVbin = 2�O+�axes and FOVov = 2�I��axes. Looking at Figure 3.16 it is
apparent that to correct for the rotated axes the right image must be rotated
counter-clockwise, and the left image clockwise, both by �=2 through each
eye.

Compare the binocular and overlapped FOV when the axes are rotated
inward in Figure 3.17.

Incorporate the distance between the screen centers and the opti-

cal axes

Finally, a correction is needed if the center of a display screen is o�set from
the optical axis. To correct this error, a perspective projection is neces-
sary that has its computational center of projection at that o�set. Another
method is to calculate the o�set in pixels, and translate the screen image by
that o�set in the opposite direction. Note that the computed screen image
must then be larger than the one shown on screen, or else data will be lost
on the side of the image. Also there is a limit to the o�set that can be
corrected with this method.

CHAPTER 3. STEREOSCOPY 26

(a) (b)

image data

screen

center of projection

(c) (d)

Figure 3.6: Initial situation (a), situation after translation (b), Perspective
projection (c) and pan back (d)

CHAPTER 3. STEREOSCOPY 27

α β

Figure 3.7: Di�erent convergence because of di�erent IPD

display screens

optics

eyes

computer

HMD

sensor

optical
axis

Figure 3.8: The HMD in a VE system

CHAPTER 3. STEREOSCOPY 28

F

r

φ

projection plane

Figure 3.9: The LEEP optics projection

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

distance

relative magnification

0.0 0.25 0.50 0.75 1.00

Figure 3.10: LEEP magni�cation in relation to distance from optical axis

CHAPTER 3. STEREOSCOPY 29

optics

optics

display screen seen by user

display screen predistorted screen seen by userpredistortion

Figure 3.11: Results without and with predistortion

optical axis

Av Pv

As Ps

optics

eye

screen

virtual image of screen

r v

rs

Figure 3.12: Optics model for a single eye

CHAPTER 3. STEREOSCOPY 30

Ps

s
x

s
y

s

r s

A

screen

Figure 3.13: A point in screen space

eye

φ

A P

r v

v v

z v

Figure 3.14: Angular position of a point

CHAPTER 3. STEREOSCOPY 31

FOV

binFOV

ov

φ
O

φ Iφ I
φ
O

IPD

Figure 3.15: FOV with parallel optical axes

IPD

φ
O

φ I φ I
φ
O

FOVov

binFOV

angle between
optical axes

Figure 3.16: FOV with non-parallel optical axes, turned outward

CHAPTER 3. STEREOSCOPY 32

IPD

FOVov

binFOV

Figure 3.17: FOV with non-parallel optical axes, turned inward

Chapter 4

The Stereoscopy

Optimization System

4.1 Introduction

To be able to determine the relative importance of the errors described in
Section 3.3, a test system was developed that allows independent manip-
ulation of many error-related parameters in a stereo image renderer. The
system is called the Stereoscopy Optimizaton System, or SOS for short.

The error corrections that have been implemented in the SOS are de-
scribed in Section 4.2. Section 4.3 examines the implementation of the cor-
rections. More information on the implementation can be found in Appendix
A.

4.2 Correcting the errors

This section discusses the error corrections that have been incorporated in
our system, and the methods used to implement them.

33

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 34

4.2.1 General errors

accomodation does not correspond with convergence

This error cannot be corrected with our system, for two main reasons:

� First, the object on which the viewer is focusing must be known. This
could perhaps be implemented using accurate eye-tracking devices.

� Second, this object would have to be rendered such that it is in focus

if the viewer accomodates for the object's true distance, and all other
objects in the environment out of focus (which is a simulation of depth of
�eld), to a degree corresponding with their distance from the viewer.
Due to limitations in display resolution and computing power, this
cannot yet be done.

incorrect projection

The available projections in the SOS are on- or o�-axis projection and
projection assuming parallel viewlines. As there is always one object of
interest in our environment, the focus is on this object when using o�-axis
projection. When using on- or o�-axis projection, the resulting images are
translated inward to cause the eyes to converge by the correct angle.

Attempting to generate a stereoscopic image by rotating the object has
not been implemented, although for one object it is possible to generate a
correct image (equivalent to the one using o�-axis projection).

incorrect Inter-Pupillary Distance

The IPD can be changed, and is always incorporated in the rendering cal-
culations.

4.2.2 HMD speci�c errors

positional errors

� failure to account for angle between optical axes

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 35

The correctional rotation (see also Figures 3.12 and 3.16) is always
performed. The axes angle can be interactively changed.

� failure to incorporate position of screens

To correct this error, the images are translated by such a distance that
each computational center moves exactly on the optical axis.

The images on the operator screen are larger than the ones seen inside
the HMD. So when an image is translated to move the computational
center at the optical axis, no image data will be lost (if the translation
is not too large). The actual translation is performed by moving the
origins of the images that are sent to the HMD. The computational
FOV is scaled up to account for the larger operator screen images.

Note that we must know exactly which part of each image on the oper-
ator screen appears on the screens in the HMD, in order to determine
the translation in operator screen pixels.

� failure to incorporate eye positions

If the IPD is di�erent from the distance between the optical axes, a
horizontal translation is performed to move the computational center
of projection exactly in front of the eyes.

incorrect Field Of View

The FOV is calculated using the formulas described in Section 3.4.2. The
necessary parameters are read from an HMD �le, which contains all HMD
speci�c data. As with the IPD, the vertical and/or horizontal FOV can be
changed while the images are continously updated.

optics errors

� non-linear distortion

The predistortion formula of Section 3.4 has been used. As has been
said, there is a �nite number of possible (x; y) screen coordinates, hence
their predistorted values are precomputed and stored in a table.

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 36

� chromatic aberration

Correction of the chromatic aberration is not implemented. A way to
do this could be to render the red, green and blue components of the
object in three separate frame bu�ers, scaled by the correct amount to
compensate for the aberration, and then combine them.

4.3 Implementation

4.3.1 Hardware and software con�guration

The SOS is implemented using the following hardware:

� Silicon Graphics 4D-240VGX graphics workstation with

{ videosplitter

{ four 25 Mhz MIPS 3000 RISC processors

{ 48 MBytes of main memory

� Virtual Research Flight Helmet

The videosplitter produces output of four arbitrary 640x485 sections of the
1280x1024 operator screen. Two of these are sent to the HMD. 1

The development software used:

� operating system: Irix version 4.0.5

� compiler: Gnu C++ version 2.3.3

� graphics library: GL

� user interface library: Forms Library version 2.1 [Ove92]

1The Videosplitter output is RGB with NTSC (RS170A) timing. Two outputs are
connected to a converter that produces two NTSC composite signals which are sent to the
HMD.

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 37

4.3.2 Initial calculations

In class object

The point with average x, y and z coordinates and the point with maximum
coordinates are calculated. The average point will become the point on
which the viewer focuses.

In class viewer

The mentioned object points are used to set an initial viewer position. The
eyes are o�set relative to this position, parallel to the XOZ plane (note that
the y-axis is pointing upward). The azimuth and elevation of the viewer are
computed, which are used when the viewer needs to be rotated.

In class HMD

All HMD speci�c information needed in the calculations is stored in an HMD
�le. This is a plain text �le. The �le format is illustrated by the example
given below.

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 38

flhelmet.hmd -

/*

comments:

HMD file for Virtual Research Flight Helmet

*/

{ /* begin file with a { */

/*

all variables are on a separate line, of the form:

variable = value

all distances are in meters, case is not significant

*/

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 39

-

/*

true Field Of View, as may be determined by analytical ray tracing

through the lens system.

These variables may be left out if unknown,

all other variables _must_ be present

*/

TrueVerticalFOV = 58.4

TrueHorizontalFOV = 75.3

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 40

-

Ty = 0.0218 /* offset of top of screen from optical axis */

By = -0.0185 /* idem bottom of screen */

Ix = 0.0209 /* idem inner side of left screen */

Ox = -0.0333 /* idem outer side of left screen */

Cx = -0.0062 /* horizontal center offset from optical axis

of left screen */

Cy = 0.00165 /* vertical center offset */

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 41

-

Magnification = 9.66 /* transversal magnification of the optics */

VirtualImageDistance = 0.3982 /* distance of virtual image */

ObjectFieldRadius = 0.0281 /* maximum object field radius */

OpticalAxesAngle = 0.0 /* angle between optical axes */

OpticalAxesDistance = 0.064 /* distance between optical axes */

DistortionCoefficient = 0.32 /* coefficient of optical distortion */

InverseDistortionCoefficient = -0.18 /* inverse distortion coefficient */

} /* end file with a } */

First the various FOVs are calculated using the formulas described in Section
3.4 and the values read in the HMD �le. Next the horizontal and vertical
screen center o�set read in the HMD �le are converted to o�sets in operator
screen pixels. Finally the predistortion tables are precomputed, which is
discussed along with the predistortion in Section 4.3.6.

4.3.3 Setting the output window

This operation corresponds to the data transformation set image origins in
Figure ??, and is used whenever one of the following variables is changed:

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 42

� IPD

� axes distance

� screen center o�set

� distance from viewer to object (when using on- or o�-axis projection)

Our rendering computer has a hardware card called videosplitter that enables
independent output of four quadrants of the operator screen. Two of these
outputs are used to send images to the HMD. The initial origins are set
such that the regions sent to the HMD are centered in the operator screen
images. When all of the above parameters are incorporated, the origins of
the regions are set such that the computational center of projection is in
front of each eye. The correction of an o�set screen center is called an o�
center correction. 2

4.3.4 Setting up the transformations

Projection transformation

Now we are ready to set up a correct projection and viewing transformation.
First the perspective projection is determined. As only part of the image
windows on screen are sent to the HMD, the FOV which is speci�ed to the
perspective (a GL function) projection must be adjusted to account for
the size di�erence. This is done using the equations given below.

� widthV S is the width in pixels of the part of the screen image sent to
the Videosplitter (which in turn sends it to the HMD)

� widthimage the width in pixels of the total screen image,

2Note that we do not correct the vertical screen center o�set: the vertical error than
can be corrected is small because the operator screen images are just 27 pixels heigher
than the images sent to the HMD. The vertical error is much less important than the
horizontal one, as it results in only a height error.

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 43

� FOVhor is the current monocular horizontal FOV as perceived in the
HMD

� FOVadj is the corrected FOV, such that the computational FOV in the
part of the image sent to the HMD equals FOVhor

tan(FOVhor=2) = widthV S=2zv
tan(FOVadj=2) = widthimage=2zv

g)

tan(FOVadj=2)= tan(FOVhor=2) = widthimage=widthVS ,

FOVadj = 2 arctan(tan(FOVhor=2)(widthimage=widthVS))

Viewing transformation

The viewing transformation is set using the GL function lookat, which takes
as parameters the eye position and the point the eye is looking at. Hence
converging or parallel viewlines are easily implemented.

Axes angle correction

Directly after lookat() is called, a rotation matrix is added to correct for
a possible angle between the optical axes. Recall from Section 3.4.2 that
to correct for the rotated axes the right image must be rotated counter-
clockwise, and the left image clockwise, both by half the axes angle through
each eye.

4.3.5 Rendering the object

The object �le format

The object �le format being supported is the PAZ format, as used by Division
in their VE systems. The formats supports the tristrip and polystrip, which

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 44

are both triangular meshes, as in Figure 4.1.

TRISTRIP POLYSTRIP

vertex 0

1

2

3

4

5

6

vertex 0

1

2

3

4

5

Figure 4.1: An example tristrip and polystrip

Vertices 0, 1 and 2 are the same for both strips, but for n > 2 triangle
number n is built from vertices n� 2, n� 1 and n for a tristrip, and vertices
n� 2, n � 1 and 0 for a polystrip [Atk92].

One object consists of one or more patches, and one patch of one or more
strips. For the object and/or for speci�c patches several surface variables
may be set. They are listed in Table 4.1 3.

In the SOS all variables are parsed and stored, but only variables COLOUR,
COOKED and NORMALS are supported.

An informal description of the PAZ �le format is given in the dVS system
documentation [Atk92]. In Appendix A a formal LL(1)-grammar of the PAZ
�le format in BNF is given, which was used to facilitate the implementation
of a structured and easily extensible parser [Ter86].

3The table is copied from [Atk92]

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 45

variable default value meaning

COLOUR f1.0, 1.0, 1.0g diffuse colour of front surface, RGB triplet

B COLOUR f0.0, 0.0, 0.0g diffuse colour of back surface

KS 0.0 specular reflection coeff. of front surface, 0.0 : : :1.0
B KS 0.0 specular reflection coeff. of back surface

POWER 0.0 specular lighting exponent of front surface, 0.0 : : :32.0

B POWER 0.0 specular lighting exponent of back surface

NORMALS 0 the patch has vertex normals embedded in the structure

COOKED 0 the patch has colours embedded in the structure

TEXTURE 0 the patch has texture u,v coordinates embedded

Table 4.1: PAZ variables

The parser is implemented in class datafile: it tokenizes a text input into
identi�ers, numbers or delimiters. Besides the object class, class viewer

uses datafile for saving and loading of the �le holding a viewer's IPD.
Class hmd uses it for the HMD �le described previously.

The object data

The Graphics Library (GL) available on our machine supports direct ren-
dering of the trimesh and polymesh. A trimesh is rendered by calling
begintmesh(), sending all vertices in order, and calling endtmesh(). A
polymesh is in fact a trimesh having the last two vertices swapped each time
a vertex is added. The call swaptmesh() uses this fact.

So the object data structure can be implemented using one linked list, each
element holding a vertex or a delimiter between strips.

The actual object rendering (i.e. the sending of the object data to the
graphics hardware) is done by a traversal of the vertices list.

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 46

4.3.6 Precompute and predistort

Precomputing the predistortion tables

As has been said in Section 3.4.1, there is of course a �nite number of (xs; ys)
values (i.e. pixels) that have to be moved to another location. Hence all
destination coordinates can be precomputed and stored in a table. Note
that we need a table for both the left and right image, as the optical axis is
in a di�erent position in each screen 4. In our con�guration, with an image
resolution of 640x485, the tables each use just under 1.2 Mbytes of memory.

First the position of the left and right optical axes (measured from the
bottom left of each screen) is determined. Next a loop is entered in which for
each (xs; ys) couple of the left and the right image its destination coordinates
are calculated, which are stored in their respective tables. The source listing
below only shows the calculations for the left image values: obviously in the
actual program the right image values are computed as well.

4It is also possible to use one table, which is large enough to hold every possible o�set
from an optical axis.

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 47

hmdcalc.cc - precompute()

for(int y_d = 0; y_d < ver_res; y_d++)

{

for(int x_d = 0; x_d < hor_res; x_d++)

{

// compute offset from optical axis

float left_x_s = x_d * pixel_width - left_axis_x;

float left_y_s = y_d * pixel_height - left_axis_y;

// normalize these values

float left_x_sn = (left_x_s / w_s);

float left_y_sn = (left_y_s / w_s);

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 48

-

// square the radial distance

float left_r_sn_sq = left_x_sn * left_x_sn + left_y_sn * left_y_sn;

// compute new normalized value using inverse distortion coefficient k_sv

float left_x_sn_new = left_x_sn + k_sv * left_x_sn * left_r_sn_sq;

float left_y_sn_new = left_y_sn + k_sv * left_y_sn * left_r_sn_sq;

// compute new radial distance

float left_x_s_new = left_x_sn_new * w_s;

float left_y_s_new = left_y_sn_new * w_s;

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 49

-

// compute new pixel coordinates

float left_x_d = (left_x_s_new + left_axis_x) / pixel_width;

float left_y_d = (left_y_s_new + left_axis_y) / pixel_height;

// check if anything moved out of the window (which will happen if we use

// a pin-cushion distortion to correct for a barrel distortion in an HMD)

if (left_x_d < 0) left_x_d = 0;

else if (left_x_d > hor_res) left_x_d = hor_res;

if (left_y_d < 0) left_y_d = 0;

else if (left_y_d > ver_res) left_y_d = ver_res;

// store the resulting values in their tables

long index = ((y_d * hor_res) + x_d) * 2;

left_predist_table [index] = (short) left_x_d;

left_predist_table [index + 1] = (short) left_y_d;

} // for x_d

} // for y_d

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 50

Predistortion

Now we have two tables containing destination coordinates for each pixel
in our left and right images. The predistortion takes place after the entire
rendering loop, just before both images are made visible. 5 It is implemented
in a separate predist class, which is a data member of the hmd class. It holds
arrays for the old (not predistorted) and the new (predistorted) left and right
image, and the old and new left and right z-bu�ers. These arrays each take
also just under 1.2 MBytes of memory. So the total memory requirements
for this predistortion implementation (including the precomputed tables) are
a little under 12 MBytes.

The actual predistortion algorithm is fairly straigt-forward:

� both images and z-bu�ers are read from the back frame bu�er

� Next the destination arrays and pointers to the predistortion tables are
initialized (i.e. the destination images are zeroed and the destination
z-bu�ers are set to maximum value)

� Then the predistortion loop is entered. For each left and right image
pixel its new coordinates are fetched from the predistortion tables. The
pixel is then copied to its new destination if its z-bu�er value is less than
the current value. This is necessary when the predistortion is a barrel
distortion: then usually more source pixels map onto one destination
pixel. 6

� the resulting image arrays are copied back to the frame bu�er, which
is then made visible

5The images are rendered into the back frame bu�er, which is not visible on screen.
Each frame is made visible by swapping the back and the front frame bu�er.

6If the predistortion coe�cient is made positive, i.e. the predistortion is a pin-cushion
distortion, loss of data will occur because data is mapped onto a larger area. The visual
result (gaps in the image) may be alleviated using an appropriate �lter.

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 51

4.3.7 Notes on extra features

Movemode

In this mode changes in mouse movement are translated to viewer movement,
until the middle mouse button is pressed. After a new object has been
loaded, the initial viewer position is set to be some distance from the object's
center, proportional to the object's diameter. The eyes are positioned on a
line perpendicular to the y-axis and the viewline (see Figure 4.2). Note that
the y-axis is pointing upward.

IPD

reference point

viewpoint

z

y

x

o

viewline

Figure 4.2: Initial viewer position and view direction

The available functions in the movemode:

middle button: leave movemode

left button: while the left button is depressed, moving the mouse has the
following result:

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 52

up move towards object

down move away from object

no button: with no button depressed, the viewer moves as follows:

left turn clockwise around object

right turn counter-clockwise around object

up turn upward around object

down turn downward around object

Viewer left- and right turns are around a line parallel to the y-axis and
through the reference point. Up- and downward turns are around a line
through the reference point and parallel to the line through both eyes. Turns
rotate the viewpoint with respect to the reference point. Moving forward or
backward moves along the viewline. All possible movements are visible in
Figure 4.3. Note that the eyes always move in a plane parallel to the XOZ
plane. There is also a reduced movemode in which the viewer cannot turn.
During moving the frame rate is measured.

Toggle look at origin

For some tests it is required that the viewer is looking exactly at the origin
(i.e. the point with coordinates (0; 0; 0)), which is why this option was added.
Using the GL lookat function this was easily implemented.

Toggle right image mirror

For a speci�c test it is required that one of the images can be turned 180
degrees upside down. Again this was implemented using the lookat func-
tion, which has an extra twist parameter that speci�es the angle the eye is
turned.

CHAPTER 4. THE STEREOSCOPY OPTIMIZATION SYSTEM 53

move backward

move forward

turn upward

turn downward

turn right

turn left

viewpoint

reference point

Figure 4.3: Possible movements

Chapter 5

Tests

5.1 Introduction

To assess the system's usefulness for conducting stereoscopic viewing tests,
a test procedure was designed and twelve persons were tested. Section 5.2
shows that HMD screen resolution very much limits the best obtainable
accuracy. Our test procedure is described in Section 5.3, followed by the
results in Section 5.4.

5.2 Depth in an HMD

In Section 3.2 the relation between the best obtainable acuity and the
amount of depth in an image was shown. The amount of depth was mea-
sured using depth steps: the number of distances at which objects may be
positioned in a distance interval such that they are perceived as all being at
di�erent distances.

Given the following variables:

� hres: the horizontal resolution of an HMD display screen

54

CHAPTER 5. TESTS 55

� width: the width of this screen

� zv: the distance of the virtual image of the screen

and the fact that smallest possible horizontal di�erence is of course one pixel,
we can compute the best obtainable acuity in an HMD:

pixelwidth = width=hres

� = arctan(pixelwidth=zv)

And the number of depth steps s beyond distance d:

s = arctan(IPD=d)=�

An example using the values of our con�guration, an average IPD and the
value of d that was also used in Section 3.2:

� IPD = 0:065m

� d = 0:3m

� hres = 207

� width = 0:0542m

� zv = 0:3982m

pixelwidth = 0:0542=207� 0:000262m

� = arctan(0:000262=0:3982)� 2:160

s = arctan(0:065=0:3)=2:160 � 324

Recall that the corresponding value for a stereo viewer was 490, and for
real life 730. We may conclude that the amount of depth in an HMD is
approaching that of a stereo viewer.

CHAPTER 5. TESTS 56

5.3 Test description

Our test procedure involved the following steps:

1. stereoscopic viewing test

2. IPD measurement

3. IPD test in the VE, using a specially designed test object

4. test using converging versus parallel viewlines

5. predistortion test using a regular grid

The system's settings for all tests were as follows:

� o� center correction on

� initial IPD at least 10 mm above measured IPD

� converging viewlines (except in the parallel viewlines test)

� predistortion o� (except in the predistortion test)

� measured axes distance and angle correct

� measured FOVs correct

5.3.1 Stereoscopic viewing test

Test persons must be able to view stereoscopically. If they are not, they
are not allowed to do any further tests. The test we use is the TNO test
for stereoscopic vision [IT72]. The viewer wears a pair of glasses with the
left glass coloured red, and the right one green. Next a series of random
dot stereograms is presented, containing pictures requiring a certain stereo
acuity in order to be seen.

CHAPTER 5. TESTS 57

5.3.2 IPD measurement

The actual IPD of the viewer is measured, for comparison with the values
that result from the following test. The initial IPD is set to at least 10 mm
more than the measured value, to ensure that it is incorrect when an IPD
test is started.

5.3.3 IPD test using special test object

The test object consists of the letters OXO, with a vertical line above the X
in the left eye image, and a vertical line below the X in the right eye image,
as can be seen in Figure 5.1.

left eye image right eye image

Figure 5.1: IPD test object

The fact that the left and right eye image are di�erent is because the brain
is very much able to correct for stereo images based on a incorrect IPD. The
idea with this test object is that the brain will attempt to converge the central
part of the images (the OXO), and probably succeed if the computational

CHAPTER 5. TESTS 58

IPD is not too far o�, and leave the vertical lines at their true position,
as they are each con
icting with the data received by the other eye. The
result is that the viewer will change the computational IPD until the OXO
converge, which typically happens when it is less than about 3 mm o� from
the actual IPD. The vertical lines however are usually not aligned by then,
which makes a further, more precise adjustment of the IPD possible. Note
that the usefulness of this test is solely based on the assumption that the
brain behaves di�erently for di�erent areas of a perceived image.

5.3.4 Test using converging versus parallel viewlines

From now on the IPD value is set to the value resulting from the test with
the special ("OXO") test object, as apparently that is the value with which
the viewer is most comfortable.

An ordinary object at correct scale (a co�ee mug) is presented at close dis-
tance (0.40 meter) to the viewer using converging and using parallel view-
lines. The viewer is asked which image is most comfortable to the eyes.

5.3.5 Predistortion test using regular grid

The viewer is positioned directly in front of a regular grid, and is asked if
the grid lines in the edges of the image either:

� curve outward

� are straight

� curve inward

The predistortion coe�cient is adjusted (in steps of 0.05) until the viewer is
convinced that the grid lines appear straight.

CHAPTER 5. TESTS 59

5.4 Test results

Twelve persons were tested. Per test the results are given below.

� Stereoscopic viewing test

Every test person was able to see stereoscopically. The average stereo
acuity was 68.75" � 1'.

� IPD measurement

The average IPD was 65 mm.

� IPD test using special test object

This test was conducted twice, once with the test object at a distance
of two meters, once at a distance of 0.5 meters. The width of the test
object is approximately 0.4 meters.

The average IPD with which each test person viewed most comfortably
was 63 mm with the test object at 2 meters, and 66 mm with the test
object at 0.5 meters.

A suitable way to conduct this test is to set the initial IPD larger than
the measured IPD. In this way we are sure that the viewer perceives an
incorrect image, because he cannot diverge his eyes. The viewer is then
instructed to decrease the IPD until the image of one three-dimensional
object appears, which can be comfortably viewed.

The signi�cance of these results is reduced because the precise mapping
of the images on the operator screen to the display screens inside the
HMD is not known. For this the HMD must be disassembled. Already
by looking with the right eye through the left eye optics and vice versa,
it could be seen that:

{ not all of the operator screen images is visible on the HMD screens

{ the loss of data is di�erent for each side of a screen

{ the loss of data is di�erent for the left and right screen

CHAPTER 5. TESTS 60

This implies that all correctional translations are inaccurate: they are
calculated in operator screen pixels, assuming a certain number of pixels
map on a certain width in millimeters on an HMD screen.

CHAPTER 5. TESTS 61

� Test using converging versus parallel viewlines

Nine out of twelve test persons (� 75 %) judged the images presented
using converging viewlines more pleasant to watch. Three test persons
liked the parallel viewlines version better. Theoretically the images
generated using parallel viewlines were the least pleasing to the eyes,
because the object viewed was positioned at a distance of 0.4 meters.
This caused distortion in the parallel viewlines images.

� Predistortion test using regular grid

The theoretically optimal predistortion coe�cient is -0.18 [RR91]. The
average of the coe�cients chosen by our test persons to be optimal is
-0.17125 � -0.17.

The di�erence between our value and the "optimal" one may be ex-
plained by two reasons:

{ as has been stated above, the exact operator screen image to HMD
screen mapping is not known, causing pixel positions calculated in
the precomputing stage to be slightly o�

{ when someone focuses at a certain distance, his "focal plane" is
slightly curved, implying that a grid displayed as in our test per-
haps must also be slightly curved to appear straight. Such a grid
would then be "straighter than in reality", however.

{ before the grid is predistorted, the viewer sees a (pin-cushion) dis-
torted grid. This may in
uence the viewer such that he sees a
barrel-distorted grid after predistortion, even if this grid is actu-
ally straight.

Chapter 6

Discussion and conclusion

Before the beginning of this project, three goals were formulated:

� identi�cation of parameters in
uencing depth perception in an HMD

� development of a test system allowing independent manipulation of all
parameters

� implementation of a test enabling setting of user-dependent parameters
inside a Virtual Environment

It follows from this report that those three goals were achieved. The fact
that all HMD speci�c parameters are maintained in a separate �le enhances
the system's
exibility.

With respect to the �rst goal, identi�cation of the parameters, it is interest-
ing to attempt to determine the relative importance of each parameter.

We believe that the most fundamental requirement of stereoscopic images
generated by an HMD is that the eyes of the viewer are able to converge
on the images, i.e. enable the brain to combine them to one image. The
horizontal position of the images, the type of projection used and the angle
between the optical axes all in
uence this ability. Assuming that aberrations
are all of the same order, we arrange them as follows:

62

CHAPTER 6. DISCUSSION AND CONCLUSION 63

1. horizontal position, which in turn depends on the

� IPD

� screen center o�set

� distance between optical axes

� distance between viewer and object 1

2. angle between optical axes. Very small angles (< 2 degrees) may be
tolerable.

3. projection type. We found that projection without converging viewlines
is especially disturbing for viewing at close distances. Assuming a VE
application has one object of interest (e.g. a tool) at a small distance,
one may choose to render this object using converging viewlines (= o�-
axis projection), and all other objects (the surroundings) using on-axis
projection. A projection using parallel viewlines is not recommended:
it always produces distortion, depending on the object distance.

4. optics distortion

The optics distortion may also result in incorrect convergence, espe-
cially near the edges of the image. Apart from that it obviously causes
the image to be incorrect. The importance of this error also very much
depends on the VE application type. Currently the predistortion is
computationally too expensive to use it during real-time rendering. In
our system, after optimization and parallel implementation, a frame
rate of 4 Hz may be achieved. The predistortion can easily be im-
plemented in hardware, which should be done if real-time rendering is
required.

5. Field Of View

As an incorrect FOV only results in a size error, we classify it as the
least important error. Naturally this may not be the case, depending
on the application requirements.

1The last of course only when a projection type is used that requires a horizontal
translation to get the convergence right.

CHAPTER 6. DISCUSSION AND CONCLUSION 64

Note that the resolution of the HMD display screens determines whether a
certain error correction is useful or not: if a positional error does not cause
a shift of at least one pixel, it will not be visible anyway.

Concerning the special IPD test object, it will be interesting to see if after
incorporation of the exact operator screen images to HMD mapping the test
can be used to determine one comfortable IPD for all distances. In our
opinion the test object should be as large as possible, so it does not become
too easy for the brain to combine both images.

Another improvement would be to include eye trackers inside the HMD.
These will have to be accurate enough to be able to determine on which
object the viewer is focusing.

Suggested extensions to the SOS are:

� parallel implementation of the predistortion

� incorporation of the position- and orientation sensor data

� combininig projection types in one rendering

Also parts of the SOS could be ported to the dVS VE operating system
running on our workstation.

To summarize, we recommend the following setup:

� ensure correct horizontal position of the images, a correct computa-
tional FOV and optical axes angle

� use converging viewlines for nearby (closer than 3 meters) objects, and
on-axis projection for far objects

� use predistortion implemented in hardware

After taking these measures, we will come close to achieving orthostere-
oscopy.

Appendix A

Implementation aspects

This appendix is intended for readers who want to acquire insight into the
program structure of the SOS.

General information

The system has been written in C++, using the Gnu gcc compiler version
2.3.3, the GL graphics library and the Forms user interface library [Ove92].
Not counting the system, GL and Forms Library header �les, the total source
length is about 5300 lines.

Program decomposition

Recall the class hierarchy of "has-a" relations resulting from the design phase
(see Figure A.1).

The following "main" classes are de�ned: operator, menu, viewer, view,

hmd, images, object, predist, videosplitter, status, syspar. Support-
ing classes are: data�le (general ASCII token �le), Window (standard
GL window), TextWindow (derived from Window, adds text routines),
GraphicsWindow (derived from Window, adds graphics routines), slider

65

APPENDIX A. IMPLEMENTATION ASPECTS 66

SOS

ViewerOperator HMD Status

 view object

images
 Menu

 Menu

 Menu

Figure A.1: Object Relationship Graph

(general slider), mouse (mouse routines), picklist (�le picklist), light (ob-
ject lighting). Miscellaneous source �les are: misc (some conversion func-
tions, e.g. strupr), vector (vector functions), sysdat (global declarations:
e.g. colours), error (error message function).

The window classes are all contained in window.cc and window.hh. The
hmd class source is split into four �les: the header hmd.hh, and hmd.cc,
hmdfile.cc and hmdcalc.cc. The PAZ grammar is de�ned in pazdat.hh,
the hmd �le grammar in hmddat.hh and the viewer �le grammar in vwrdat.hh.

Cross reference

In Table A.1 a cross reference is given between all main classes.

APPENDIX A. IMPLEMENTATION ASPECTS 67

these view viewer hmd predist

use !

menu do view menu do viewer menu do hmd menu
do view-
point menu

viewer get converging

hmd

images get predistortion look get current FOV predistort

object calculate viewpoint

view

videospl. get converging get center o�set
get o� center get screen width

these object images videospl. status data�le

use !

menu do object menu redisplay redisplay
rotate images
setup viewer

viewer get reference redisplay various various

points setup viewer

hmd redisplay get resolution various various
setup projection
setup viewer

images render get origins
get resolution
set image origins

object redisplay various various
setup viewer

view set image origins various

videospl. get dimensions various

Table A.1: Method (function) calls between classes

Appendix B

Figure sources

Figure 3.2 [Fer87]

Figure 3.4 [VSLC90]

Figure 3.7 [RR91]

Figure 3.9 [How91]

Figure 3.12 [RR91]

Figure 4.1 [Atk92]

68

Appendix C

Acknowledgements

This project has greatly bene�tted from the support of many people working
at the Physics and Electronics Laboratory. I very much appreciate their help,
which has been a main factor in �nishing this project at the projected date.
I speci�cally want to acknowledge:

� everyone working in the High Performance Computing group

� dr. G.J. Jense

� ir. F. Kuijper

� J. Stevens

� dr. P. van Oosterom

� everyone volunteering to be tested

And from outside FEL-TNO:

� dr. D.P. Huijsmans of Leiden University

� J.P. Rolland of the University of North Carolina at Chapel Hill

� E. Yeaman of Virtual Research

69

Bibliography

[Atk92] Phil Atkin. Paz object �le speci�cation. Technical report, Divi-
sion, 1992. appendix K to the dVs v0.2 documentation.

[Fer87] J.G. Ferwerda. A practical guide to stereo photography. 3-D Book
Productions, 2nd edition, 1987.

[HN92] Mats Henricson and Erik Nyquist. Programming in c++, rules
and recommendations. Technical Report M 90 0118 Uen, Ellemtel,
1992.

[Hod92] Larry F. Hodges. Time multiplexed stereoscopic computer graph-
ics. IEEE Computer Graphics and Applications, 12(2):20{30,
march 1992.

[How91] Eric M. Howlett. Wide angle orthostereo. In Proc. SPIE vol.1457,
Stereoscopic Displays and Applications II, pages 210{223, 1991.

[IT72] IZF-TNO. TNO test for stereoscopic vision. Lam�eris Ootech,
ninth edition, 1972.

[Min93a] P. Min. Stereoscopy optimization system, design and speci�cation
document. Technical report, FEL-TNO, May 1993.

[Min93b] P. Min. Stereoscopy optimization system, requirements de�nition
document. Technical report, FEL-TNO, March 1993.

70

BIBLIOGRAPHY 71

[Ove92] Mark H. Overmars. Forms Library, A Graphical User Interface
Toolkit for Silicon Graphics Workstations. Utrecht University, the
Netherlands, 2.1 edition, 1992.

[RR91] Warren Robinett and Jannick P. Rolland. A computational model
for the stereoscopic optics of a head-mounted display. In Proc.

SPIE vol.1457, Stereoscopic Displays and Applications II, pages
140{160, 1991.

[Sut68] Ivan E. Sutherland. A head-mounted three dimensional display.
In Proc. Fall Joint Computer Conference, pages 757{764, 1968.

[Ter86] Patrick D. Terry. Programming Language Translation. Addison-
Wesley, 1986.

[Val66] N.A. Valyus. Stereoscopy. Focal Press, London, 1966.

[vdB88] J. van den Bos. Design and speci�cations based on a protocol-
constrained object language. Technical report, Leiden University,
January 1988.

[VSLC90] Harry Veron, David A. Southard, Je�rey R. Leger, and John L.
Conway. Stereoscopic displays for terrain database visualization.
In Proc. SPIE vol.1256, Stereoscopic Displays and Applications,
pages 124{135, 1990.

[Win92] J.F.H. Winkler. Objectivism: "class" considered harmful. Com-
munications of the ACM, 35(8):128{130, August 1992.

[WP90] Steven P. Williams and Russell V. Parrish. New computational
control techniques and increased understanding for stereo 3-d dis-
play. In Proc. SPIE vol.1256, Stereoscopic Displays and Applica-

tions, pages 73{82, 1990.

[WS82] G�unter Wyszecki and W.S. Stiles. Color Science, Concepts and
Methods, Quantitative Data and Formulae. John Wiley & Sons,
2nd edition, 1982.

BIBLIOGRAPHY 72

[You91] Yourdon. Structured Analysis for Real Time Systems, Course
Lecture Notes, 4.1 edition, 1991.

